拉格朗日乘子法和KKT条件

转载自:https://www.cnblogs.com/liaohuiqiang/p/7805954.html
感谢作者PilgrimHui,讲解的很清楚

拉格朗日乘子法和KKT条件

0 前言

上”最优化“课,老师讲到了无约束优化的拉格朗日乘子法和KKT条件。

这个在SVM的推导中有用到,所以查资料加深一下理解。

 

1 无约束优化

对于无约束优化问题中,如果一个函数f是凸函数,那么可以直接通过f(x)的梯度等于0来求得全局极小值点。

为了避免陷入局部最优,人们尽可能使用凸函数作为优化问题的目标函数。

凸集定义:欧式空间中,对于集合中的任意两点的连线,连线上任意一点都在集合中,我们就说这个集合是凸集。

凸函数定义:对于任意属于[0,1]的a和任意属于凸集的两点x, y,有f( ax + (1-a)y ) <= a * f(x) + (1-a) * f(y),几何上的直观理解就是两点连线上某点的函数值,大于等于两点之间某点的函数值。凸函数的任一局部极小点也是全局极小点

半正定矩阵的定义:特征值大于等于0的实对称矩阵。

半正定矩阵的充要条件:行列式(n阶顺序主子式)等于0,行列式的i阶顺序主子式>=0,i从1到n-1

凸函数的充要条件:如果f(x)在开凸集S上具有二阶连续偏导数,且f(x)的海塞矩阵(二阶偏导的矩阵)在S上处处半正定,则f(x)为S上的凸函数。

 

2 约束优化定义

考虑带约束的优化问题,可以描述为如下形式

 

其中f(x)是目标函数,g(x)为不等式约束,h(x)为等式约束。

若f(x),h(x),g(x)三个函数都是线性函数,则该优化问题称为线性规划。若任意一个是非线性函数,则称为非线性规划。

若目标函数为二次函数,约束全为线性函数,称为二次规划。

若f(x)为凸函数,g(x)为凸函数,h(x)为线性函数,则该问题称为凸优化。注意这里不等式约束g(x)<=0则要求g(x)为凸函数,若g(x)>=0则要求g(x)为凹函数。

凸优化的任一局部极值点也是全局极值点,局部最优也是全局最优。

 

3 等式约束

考虑一个简单的问题目标函数f(x) = x1 + x2,等式约束h(x)=x21+x222h(x)=x12+x22−2,显然f(x)的极小值为原点(1.1, -1.1),落在可行域外。可行域以原点为圆心,半径为1。

这种情况约束起作用,要考虑求解f(x)在可行域内的极小值点。

对于f(x)而言要沿着f(x)的负梯度方向走,才能走到极小值点,如下图的蓝色箭头。

这个时候g(x)的梯度往区域外发散,如下图红色箭头。

显然,走到极小值点的时候,g(x)的梯度和f(x)的负梯度同向。因为极小值点在边界上,这个时候g(x)等于0。

 拉格朗日乘子法和KKT条件_第1张图片

 

 

4.3 总结

极小值点落在可行域内(不包含边界):这个时候可行域的限制不起作用,相当于没有约束,直接f(x)的梯度等于0求解,这个时候g(x极小值点)<0(因为落在可行域内)。

极小值点落在可行域外(包含边界):可行域的限制起作用,极小值点应该落在可行域边界上即g(x)=0,类似于等值约束,此时有g(x)的梯度和f(x)的负梯度同向。

拉格朗日乘子法和KKT条件_第2张图片

 

总结以上两种情况,可以构造拉格朗日函数来转换求解问题。

对于不等式约束的优化,需要满足三个条件,满足这三个条件的解x*就是极小值点。

这三个条件就是著名的KKT条件,它整合了上面两种情况的条件。

特别注意:优化问题是凸优化的话,KKT条件就是极小值点(而且是全局极小)存在的充要条件。

不是凸优化的话,KKT条件只是极小值点的必要条件,不是充分条件,KKT点是驻点,是可能的极值点。也就是说,就算求得的满足KKT条件的点,也不一定是极小值点,只是说极小值点一定满足KKT条件。

拉格朗日乘子法和KKT条件_第3张图片 

 

不是凸优化的话,还需要附加多一个正定的条件才能变成充要条件,如下图所示(半正定得到的是极小,正定得到的是严格极小)。

拉格朗日乘子法和KKT条件_第4张图片

 

5 约束优化总结

拓展一下,对于同时有多个等式约束和多个不等式约束,构造的拉格朗日函数就是在目标函数后面把这些约束相应的加起来,KKT条件也是如此,如下图所示。

拉格朗日乘子法和KKT条件_第5张图片

 

6 优化问题的总结

简单总结一下,考虑凸优化问题。

对于无约束的优化问题,直接令梯度等于0求解。

对于含有等式约束的优化问题,拉格朗日乘子法,构造拉格朗日函数,令偏导为0求解。

对于含有不等式约束的优化问题,同样构造拉格朗日函数,利用KKT条件求解。

对于含有约束的优化问题,还可以转化为对偶问题来求解,下篇讲述一下拉格朗日对偶性的问题http://www.cnblogs.com/liaohuiqiang/p/7805954.html

 

7 参考资料

瑞典皇家理工学院(KTH)“统计学习基础”课程的KKT课件:http://www.csc.kth.se/utbildning/kth/kurser/DD3364/Lectures/KKT.pdf

这门“统计学习基础”的schedule上有一些其它课件:http://www.csc.kth.se/utbildning/kth/kurser/DD3364/Schedule.php



你可能感兴趣的:(machineLearning)