李宏毅-深度学习Note(Lecture 0-2 Introduction Regression)

李宏毅-深度学习Note

视频链接:机器学习-李宏毅(2019) Machine Learning

参考:李宏毅 深度学习19(完整版)国语】机器学习 深度学习
   李宏毅-深度学习Note(目录)


  • 目录
  • P1ML Lecture 0 - Introduction of Machine Learning
  • P2ML Lecture 1 - Regression - Case Study
  • P3ML Lecture 1 - Regression - Demo
  • P4ML Lecture 2 - Where does the error come from

P1ML Lecture 0 - Introduction of Machine Learning
  1. ML是什么?

    输入→ML(大量数据训练的程序)→输出

  2. Learning Map

    李宏毅-深度学习Note(Lecture 0-2 Introduction Regression)_第1张图片

P2ML Lecture 1 - Regression - Case Study
  1. Regression三步骤

    Model → Goodness of Function → Gradient Descent

    1.1 Model

    自定义预测函数

    1.2 Goodness of Function

    A set of function → Goodness of function f ← Training Data

    1.3 Gradient Descent

    凡可微分的函数,都可以用梯度下降找到最优解

    注:Linear Regression上是没有局部最优解,只可能有全局最优解
      Because the loss function L is convex.(凸函数)

    问:为什么机器学习时需要划分训练与测试阶段?

      主流为监督学习

    优化模型可以使函数更加复杂,泰勒展开式

    一个越复杂的模型,表示能力越强,因为表示的情况越多。(高次包含低次)

P3ML Lecture 1 - Regression - Demo
import numpy as np
import matplotlib.pyplot as plt

x_data = [338., 333., 328., 207., 226., 25., 179., 60., 208., 606.]
y_data = [640., 633., 619., 393., 428., 27., 193., 66., 226., 1591.]
# y_data = b + w * x_data

# bias
x = np.arange(-200, -100, 1)
# weight
y = np.arange(-5, 5, 0.1)
Z = np.zeros((len(x), len(y)))
X, Y = np.meshgrid(x, y)
for i in range(len(x)):
    for j in range(len(y)):
        b = x[i]
        w = y[j]
        Z[j][i] = 0
        for n in range(len(x_data)):
            Z[j][i] = Z[j][i] + (y_data[n] - b - w * x_data[n])**2
        Z[j][i] = Z[j][i]/len(x_data)

# bias
x = np.arange(-200, -100, 1)
# weight
y = np.arange(-5, 5, 0.1)
Z = np.zeros((len(x), len(y)))
X, Y = np.meshgrid(x, y)
for i in range(len(x)):
    for j in range(len(y)):
        b = x[i]
        w = y[j]
        Z[j][i] = 0
        for n in range(len(x_data)):
            Z[j][i] = Z[j][i] + (y_data[n] - b - w * x_data[n])**2
        Z[j][i] = Z[j][i]/len(x_data)

# y_data = b + w * x_data
# initial b
b = -120
# initial w
w = -4
# learning rate
lr = 0.0000001
# iteration = 100000
iteration = 100

# store initial values for plotting
b_history = [b]
w_history = [w]

# iterations
for i in range(iteration):
    b_grad = 0.0
    w_grad = 0.0
    
    for n in range(len(x_data)):
        b_grad = b_grad - 2.0*(y_data[n] - b - w*x_data[n])*1.0
        w_grad = w_grad - 2.0*(y_data[n] - b - w*x_data[n])*x_data[n]
        
    # update parameters
    b = b - lr*b_grad
    w = w - lr*w_grad
    
    # store parameters for plotting
    b_history.append(b)
    w_history.append(w)
    
    # plot for figure
    plt.contourf(x,y,Z, 50, alpha=0.5, cmap=plt.get_cmap('jet'))
    plt.plot([-188.4], [2.67], x, ms=12, markeredgewidth=3, color='orange')
    plt.plot(b_history, w_history, 'o-', ms=3, lw=1.5, color='black')
    plt.xlim(-200, -100)
    plt.ylim(-5, 5)
    plt.xlabel(r'$b$', fontsize=16)
    plt.ylabel(r'$w$', fontsize=16)
    plt.show()
# 优化
# y_data = b + w * x_data
# initial b
b = -120
# initial w
w = -4
# learning rate
lr = 1
# iteration = 100000
iteration = 100

# store initial values for plotting
b_history = [b]
w_history = [w]

# iterations
for i in range(iteration):
    b_grad = 0.0
    w_grad = 0.0
    
    for n in range(len(x_data)):
        b_grad = b_grad - 2.0*(y_data[n] - b - w*x_data[n])*1.0
        w_grad = w_grad - 2.0*(y_data[n] - b - w*x_data[n])*x_data[n]
        
    # update parameters
    b = b - lr*b_grad
    w = w - lr*w_grad
    
    # store parameters for plotting
    b_history.append(b)
    w_history.append(w)
    
    # plot for figure
    plt.contourf(x,y,Z, 50, alpha=0.5, cmap=plt.get_cmap('jet'))
    plt.plot([-188.4], [2.67], x, ms=12, markeredgewidth=3, color='orange')
    plt.plot(b_history, w_history, 'o-', ms=3, lw=1.5, color='black')
    plt.xlim(-200, -100)
    plt.ylim(-5, 5)
    plt.xlabel(r'$b$', fontsize=16)
    plt.ylabel(r'$w$', fontsize=16)
    plt.show()
P4ML Lecture 2 - Where does the error come from

与标准值的偏差bias + 与其他函数均值的方差variance

simple model → Large bias + Small variance

comple model → Small bias + Large variance

不能适合训练集 + large bias → Underfitting

适合训练集,在测试集上较大错误 + large variance → Overfitting

large bias:

Add more features as input
A more complex model

large variance:

More data
Regularization

Corss Validation:

训练集(训练集+验证集) + 测试集(Public) + 测试集(Private)

你可能感兴趣的:(深度学习)