- threejs——无人机概念切割效果
孙华鹏
无人机cocos2d游戏引擎
主要技术采用着色器的切割渲染,和之前写的风车可视化的文章不同,这次的切割效果是在着色器的基础上实现的,并新增了很多可调节的变量,兄弟们,走曲儿~线上演示地址,点击体验源码下载地址,点击下载正文从图中大概可以看出以下信息,一个由线组成的无人机模型,一个由粒子组成的无人机模型,那么这些粒子、线都是从一个无人机的gltf模型中提取出来的,无人机模型由很多个小的Mesh组成的一个大的group,那么为了着
- JS中window.dispatchEvent的原理和使用初识
匹马夕阳
javascript前端开发语言
window.dispatchEvent是JavaScript中用于触发事件的一个方法,它允许开发者在DOM(文档对象模型)中触发特定的事件。这对实现自定义事件或者将事件传递给其他组件或部分的应用非常有用。文章目录使用场景具体代码示例步骤1:创建自定义事件步骤2:触发事件步骤3:监听事件步骤4:集成到页面解释使用场景示例:跨组件通信ModuleA:触发事件ModuleB:监听事件优势注意事项总结使
- 【ArkUI】对于Flex布局与基础组件&&声明式UI-组件封装&&父子组件相互绑定的运用
一键难忘
harmonyos华为OpenHarmony对于Flex布局与基础组件声明式UI-组件封装
文章目录一.Flex布局与基础组件二.声明式UI-组件封装和父对子组件传值2.1组件封装2.2父对子组件传值三.父子组件相互绑定3.1远程模拟器3.2Link装饰器一.Flex布局与基础组件Flex是FlexibleBox的缩写,意为”弹性布局”,用来为盒状模型提供最大的灵活性。任何一个容器都可以指定为Flex布局。1.先规定弹性布局的大小,设置为百分之百。.width("100%").heigh
- 2025美赛数学建模C题:奥运奖牌榜模型——思路+代码+模型
灿灿数模
人工智能
详细思路更新见文末名片2025MCM问题C:奥运奖牌榜模型除了观看2024年巴黎夏季奥运会的各项个人比赛外,粉丝们还关注每个国家的“奖牌榜”。最终结果(表1)显示,美国获得了最多的奖牌(126枚),中国和美国在金牌榜上并列第一(40枚金牌)。东道国法国在金牌榜上排名第五(16枚金牌),但在总奖牌榜上排名第四,而英国以14枚金牌排名第七,在总奖牌数上排名第三。金牌银牌铜牌总计美国404442126中
- 2025美赛数学建模MCM/ICM选题建议与分析,思路+模型+代码
灿灿数模
数学建模
2025美赛数学建模MCM/ICM选题建议与分析,思路+模型+代码,详细更新见文末名片一、问题A:测试时间:楼梯的恒定磨损(ArchaeologicalModeling)适合专业:考古学、历史学、数学、机械工程难度:中等开放度:中等问题A让学生探索如何根据楼梯的磨损情况推断楼梯的使用情况。这个问题涉及到对磨损的定量分析,并通过历史记录推测使用模式。该题目适合对历史、考古以及机械磨损有兴趣的学生,尤
- Python数据分析案例教程
kkchenjj
数据挖掘python数据分析信息可视化
Python数据分析案例教程Python在数据分析中的应用Python因其简洁的语法、强大的库支持以及广泛的社区资源,已成为数据分析领域的首选语言。它能够处理从数据清洗、数据可视化到机器学习模型构建的整个数据科学流程。本节将深入探讨Python在数据分析中的具体应用,包括但不限于数据清洗、数据探索、统计分析和预测建模。数据清洗数据清洗是数据分析的首要步骤,涉及处理缺失值、异常值、重复数据以及数据类
- 2024 年 MathorCup 数学应用挑战赛——大数据竞赛 赛道 B:电商品类货量预测及品类分仓规划 思路和代码 持续更新中
2025年数学建模美赛
数学建模2024年大数据第五届MathorCupB题
2024年所有数学建模类比赛的个人思路和代码都会发布到专栏内,会结合最新的chatgpt发布思路,开赛一天后恢复原价99,不代写论文,不回复私信.没有群,只需订阅一次目录问题分析与解决思路问题1:货量预测模型问题2:一品一仓分仓规划问题3:一品多仓分仓规划总结这类大数据竞赛的重点在于构建一个全面的预测和优化模型,通过数据处理、时间序列分析以及运筹优化来完成货量预测和分仓规划。下面是一个解决问题的整
- 2024年美赛MCM/ICM E题 财产保险的可持续性 最新思路
2025年数学建模美赛
数学建模20242024美赛思路财产保险的可持续性最新思路
专栏内ABCDEF题持续更新中这个数学建模问题要求我们开发两个模型:一个用于保险公司决定是否在极端天气事件频发地区承保保单的模型,另一个为社区领导人提供如何保护具有文化、历史、经济或社区意义建筑的指导模型。我们将分步骤地探讨这两个模型的开发过程,提供详细的解决思路和方法。保险公司模型目标开发一个模型,帮助保险公司评估在特定地区承保财产保险的风险与收益,特别是在极端天气事件日益增多的背景下。方法数据
- 从 TCP/IP 演进看按序流与性能
dog250
tcp/ip网络协议网络
前面谈到互联网从早期对等通信模型转入后来内容分发模型后的一系列问题,诸如拥塞,安全等,本文谈谈关于性能的更普遍方面。TCP/IP祖师爷1974年的开山论文AProtocolforPacketNetworkIntercommunication以及随后RFC675,标志着TCP/IP的正式诞生,在此之前还有一个里程碑事件,即RFC33NCP标准化。RFC33解决了分布式通信问题,而RFC675解决了异
- 2025数学建模美赛B题完整建模思路——管理可持续旅游业
鹿鹿数模
数学建模
2025MCM问题B:管理可持续旅游业以下是我们对该题目的赛题分析,由于完整内容过长,因此在此处放出部分内容,欢迎从文末小卡片处加群获取。赛题分析以下内容包括三个主要部分:(1)题目的中文翻译(2)对题目的整体分析与思路综述(3)对题目要求的逐项详细分析与求解思路。本文的撰写将综合运用多元的数学模型、算法以及机器学习/深度学习的方法,并在必要时给出题外假设与可行的创新性思路,以期为参赛者提供较为系
- 使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统 yolov8来训练无人机数据集并检测无人机
QQ_767172261
无人及视角YOLO无人机深度学习
使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统yolov8来训练无人机数据集并检测无人机无人机数据集,yolo格式种类为uav,一共近5w张图片,如何用yolov8代码训练无人机检测数据集文章目录以下文章及内容仅供参考。1.环境部署2.数据预处理数据集准备划分数据集3.模型定义4.训练模型5.评估模型6.结果分析与可视化7.集成与部署PyQt6GUI(`
- 数据库基础知识:理论、E-R图、事务、原则
地信小学生
数据库数据库ubuntupostgresql
(5)数据库理论与E-R图数据库理论(DatabaseTheory)是在创建数据库的过程涉及创建现实世界的抽象模型;将现实世界的概念作为实体表示在数据库中。E-R图(EntityRelationshipDiagramming)用于表示数据模型的图形工具/关系的抽象,主要用于数据库设计阶段,通过实体(Entity)、属性(Attribute)和关系(Relationship)来描述数据之间的结构和联
- ChatGPT是强人工智能吗?
呵呵爱吃菜
chatgpt人工智能
ChatGPT是强人工智能吗?本文从人工智能发展的三个阶段的角度,分析当前强大的AI大模型所处的阶段,并通过对比各阶段的定义,明确各阶段的特点和未来发展方向;NarrowAI(弱人工智能)、AGI(人工通用智能)和ASI(人工超级智能)代表了人工智能发展的三个不同阶段,它们在智能水平、任务范围和应用场景上存在显著差异。以下是它们的总结与对比:1.定义与特点类型NarrowAI(弱人工智能)AGI(
- 图像分类与识别的自组织特征映射网络实践
无声远望
本文还有配套的精品资源,点击获取简介:自组织特征映射网络(SOFM)是一种无监督学习模型,适用于图像处理中的预处理、特征提取和分类识别。通过在MATLAB中实现SOFM,可以进行数据预处理、特征提取、网络训练、分类与识别以及优化评估。本内容涵盖了SOFM网络的应用步骤、训练过程、参数调整和性能评估,旨在提供图像处理问题的解决方案。1.自组织特征映射网络简介1.1自组织特征映射网络概述自组织特征映射
- c语言 指针 pdf,深入理解c指针 PDF扫描版[33MB]
origami dance
c语言指针pdf
深入理解C指针内容简介:深入理解C指针和内存管理,提升编程效率!这是一本实战型图书,通过它,读者可以掌握指针动态操控内存的机制、对数据结构的增强支持,以及访问硬件等技术。本书详细阐述了如何在数组、字符串、结构体和函数中使用指针,同时演示了相应的内存模型及其对指针使用的影响。指针为C语言带来了强大的功能和灵活性,却也是C语言中最难啃的一块“骨头”。本书旨在帮读者透彻理解指针,解决这个老大难问题。不论
- k8s pod分类、核心组件、网络模型、kubectl常用命令
2501_90243308
kubernetes网络容器
假如有2个pod,pod有其生命周期,万一pod所在的节点宕机了,那么此pod将应该要在其他的节点上重建,而重建完的pod与原来的pod已经不是同一个pod了,只是两者都是运行的同一个服务而已。且每个容器都有其IP地址,重建的pod中的容器其P地址与之前的pod中容器的IP地址是不一样的,如此一来就会存在一个问题,客户端如何访问这些pod中的容器呢?措施:服务发现:就比如集贸市场的注册摊位和声明地
- 神经网络|(三)线性回归基础知识
西猫雷婶
神经网络线性回归机器学习
【1】引言前序学习进程中,已经对简单神经元的工作模式有所了解,这种二元分类的工作机制,进一步使用sigmoid()函数进行了平滑表达。相关学习链接为:神经网络|(一)加权平均法,感知机和神经元-CSDN博客神经网络|(二)sigmoid神经元函数-CSDN博客实际上,上述表达模型的一个基本原则是:元素和对应的权重,线性相乘后再和阈值开关作对比,元素的综合影响在本质上是一个线性函数,类似于y=wx+
- Python实现itemCF协同过滤推荐算法并计算召回率、准确率、F1分数和覆盖率
计算机软件程序设计
机器学习python推荐算法开发语言
一个完整的Python实现,包括ItemCF协同过滤算法的实现以及召回率、准确率、F1分数和覆盖率等评估指标的计算。将使用Pandas进行数据处理,Scikit-learn进行相似度计算,并编写函数来生成推荐列表和评估模型性能。1.数据准备首先,需要准备数据。假设有一个用户-物品评分矩阵(可以是显式评分或隐式反馈),表示用户对不同酒店的喜好程度。这里可以使用Pandas来处理数据。importpa
- 情感分析常见算法与模型及实现步骤
计算机软件程序设计
知识科普算法情感分析机器学习
【1】常见算法与模型情感分析(SentimentAnalysis)是一种自然语言处理(NLP)技术,用于识别和提取文本中的主观信息,如情绪、态度和意见。常见的算法和模型包括以下几种:传统机器学习方法朴素贝叶斯(NaiveBayes)基于贝叶斯定理,假设特征之间相互独立。计算简单,适用于大规模数据集。常用于文本分类任务。支持向量机(SVM)通过寻找最优超平面来划分不同的类别。在高维空间中表现良好,适
- 自然语言处理(NLP)-总览图学习
汤姆和佩琦
NLP自然语言处理学习人工智能
文章目录自然语言处理(NLP)-总览图学习1.一张总览图的学习1.语音学(Phonology)2.形态学(Morphology)3.句法学(Syntax)4.语义学(Semantics)5.推理(Reasoning)小结自然语言处理(NLP)-总览图学习转自《Python自然语言处理第二版》1.一张总览图的学习这张图片展示了一个自然语言处理的流程模型,涵盖了从语音分析到应用推理和执行的多个阶段,每
- 深度学习利用数据加载、预处理和增强数据提高模型的性能
weixin_30777913
人工智能深度学习
深度学习数据预处理是一个关键步骤,旨在提高模型的性能和准确性。通过数据加载、预处理和增强,可以显著提高深度学习模型的性能和准确性。在实际应用中,需要根据具体的数据和任务来选择合适的预处理和增强技术。以下将详细论述并举例说明如何加载、预处理和增强数据。一、数据加载在深度学习中,数据加载是第一步。这通常涉及到从各种数据源(如CSV文件、数据库、图像文件夹等)中读取数据。以DeepLearning4J(
- 论文阅读:DeepFake-Adapter: Dual-Level Adapter for DeepFake Detection(Deepfake模型快速调参)
海拉鲁的小厨娘
读论文论文阅读
一、论文信息论文名称:DeepFake-Adapter:Dual-LevelAdapterforDeepFakeDetection作者团队:项目主页:https://github.com/rshaojimmy/DeepFake-Adapter(代码暂未开源)二、动机与创新动机:目前的deepfake检测模型泛化能力差,将其归因于过拟合于低级的伪造模式,现有的deepfake检测方法仅关注低级别的伪
- 基于Python的自然语言处理系列(2):Word2Vec(负采样)
会飞的Anthony
自然语言处理人工智能信息系统自然语言处理word2vec人工智能
在本系列的第二篇文章中,我们将继续探讨Word2Vec模型,这次重点介绍负采样(NegativeSampling)技术。负采样是一种优化Skip-gram模型训练效率的技术,它能在大规模语料库中显著减少计算复杂度。接下来,我们将通过详细的代码实现和理论讲解,帮助你理解负采样的工作原理及其在Word2Vec中的应用。1.Word2Vec(负采样)原理1.1负采样的背景在Word2Vec的Skip-g
- 大模型GUI系列论文阅读 DAY4:《PREDICT: Multi-Agent-based Debate Simulation for Generalized Hate Speech Detecti》
feifeikon
论文阅读
摘要虽然已经提出了一些公共基准用于训练仇恨言论检测模型,但这些基准之间的标注标准差异为模型的泛化学习带来了挑战,限制了其适用性。先前的研究提出了通过数据整合或扩充来泛化模型的方法,但在克服数据集之间的标注标准差异方面仍然存在局限性。为了解决这些挑战,我们提出了PREDICT,一种基于多代理(multi-agent)概念的仇恨言论检测新框架。PREDICT包括两个阶段:(1)PRE(基于视角的推理)
- 2025-1-21-sklearn学习(43) 使用 scikit-learn 介绍机器学习 楼上阑干横斗柄,寒露人远鸡相应。
汤姆和佩琦
sklearn机器学习sklearn学习python人工智能scikit-learn
文章目录sklearn学习(43)使用scikit-learn介绍机器学习43.1机器学习:问题设置43.2加载示例数据集43.3学习和预测43.4模型持久化43.4规定43.4.1类型转换43.4.2再次训练和更新参数43.4.3多分类与多标签拟合sklearn学习(43)使用scikit-learn介绍机器学习文章参考网站:https://sklearn.apachecn.org/和https
- 【大模型】ChatGPT 创作各类高质量文案使用详解
小码农叔叔
AI大模型实战与应用ChatGPT文案创作ChatGPT文案创作详解ChatGPT文案创作技巧ChatGPT数据分析ChatGPT生成PPT
目录一、前言二、ChatGPT文案创作的优势三、ChatGPT各类文案创作操作实战3.1ChatGPT创作产品文案3.1.1ChatGPT创作产品文案基本思路3.1.2ChatGPT创作产品文案案例一3.1.2.1操作过程3.1.3ChatGPT创作产品文案案例二3.2ChatGPT创作视频脚本3.2.1ChatGPT创作视频脚本基本思路3.2.2ChatGPT创作视频脚本案例一3.3ChatGP
- GPT-4、GPT-4O 和 GPT-4O-mini 的区别与联系
surfirst
LLMai语言模型chatgpt
简介近年来,人工智能技术飞速发展,特别是在自然语言处理领域。GPT-4是OpenAI推出的新一代大模型,而GPT-4O和GPT-4O-mini是其优化版本,专门为不同应用场景和计算资源需求进行调整。在这篇文章中,我们将详细比较GPT-4、GPT-4O和GPT-4O-mini的区别与联系,帮助开发者更好地选择适合的模型。GPT-4是OpenAI发布的第四代通用预训练模型,具备强大的生成和理解能力,适
- Rust入门实战 编写Minecraft启动器#2建立资源模型
首发于Enaium的个人博客我们需要声明几个结构体来存储游戏的资源信息,之后我们需要将json文件解析成这几个结构体,所以我们需要添加serde依赖。serde={version="1.0",features=["derive"]}资源相关asset.rsuseserde::Deserialize;usestd::collections::HashMap;#[derive(Deserialize)
- Rust入门实战 编写Minecraft启动器#3解析资源配置
首发于Enaium的个人博客在上一篇文章中,我们已经建立了资源模型,接下来我们需要解析游戏的配置文件。首先我们添加serde_json依赖和model依赖。model={path="../model"}serde_json="1.0"之后我们在lib.rs中添加解析的trait。pubtraitParse:Sized{typeError;fnparse(value:T)->Result;}之后将所
- 讯飞绘镜(ai生成视频)技术浅析(一)
爱研究的小牛
AIGC—视频AIGC—技术综述人工智能AIGC深度学习
讯飞绘镜(也称为星火绘镜)是科大讯飞推出的一款基于人工智能技术的短视频创作平台,旨在通过先进的AI技术简化视频创作流程,让用户能够轻松将创意转化为高质量的视频内容。以下是对讯飞绘镜相关技术、工作原理及具体实现的详细介绍:一、核心技术讯飞绘镜的核心技术主要依托于科大讯飞的星火大模型,并结合了多种先进的AI技术,包括:1.大模型技术:基于讯飞星火大模型,为脚本生成、分镜生成等提供基础能力支持。该模型能
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =