CAM、热力图 pytorch可视化卷积层

参考github:https://github.com/sixitingting/CAM/blob/master/pytorch_CAM.py

也就是类激活映射(CAM)原作者所给,想要懂理论的去看论文,本次着重实践。

CAM、热力图 pytorch可视化卷积层_第1张图片

CAM结果展示:

CAM、热力图 pytorch可视化卷积层_第2张图片

top1 prediction: mountain bike, all-terrain bike, off-roader

----------------------------------------------------------实战开始-------------------------------------------------------

# simple implementation of CAM in PyTorch for the networks such as ResNet, DenseNet, SqueezeNet, Inception

import io
import requests
from PIL import Image
import torch
from torchvision import models, transforms
from torch.autograd import Variable
from torch.nn import functional as F
import numpy as np
import cv2
import json

# input image
LABELS_URL = 'https://s3.amazonaws.com/outcome-blog/imagenet/labels.json'
IMG_URL = 'http://media.mlive.com/news_impact/photo/9933031-large.jpg'
# jsonfile = r'D:\python\Camtest\labels.json'
# with open(jsonfile, 'r') as load_f:
#     load_json = json.load(load_f)

# networks such as googlenet, resnet, densenet already use global average pooling at the end,
# so CAM could be used directly.
model_id = 1
if model_id == 1:
    net = models.squeezenet1_1(pretrained=False)
    pthfile = r'E:\anaconda\app\envs\luo\Lib\site-packages\torchvision\models\squeezenet1_1.pth'
    net.load_state_dict(torch.load(pthfile))
    finalconv_name = 'features'   # this is the last conv layer of the network
elif model_id == 2:
    net = models.resnet18(pretrained=False)
    finalconv_name = 'layer4'
elif model_id == 3:
    net = models.densenet161(pretrained=False)
    finalconv_name = 'features'

net.eval()
print(net)

# hook the feature extractor
features_blobs = []


def hook_feature(module, input, output):
    features_blobs.append(output.data.cpu().numpy())


net._modules.get(finalconv_name).register_forward_hook(hook_feature)

# get the softmax weight
params = list(net.parameters())
weight_softmax = np.squeeze(params[-2].data.numpy())


def returnCAM(feature_conv, weight_softmax, class_idx):
    # generate the class activation maps upsample to 256x256
    size_upsample = (256, 256)
    bz, nc, h, w = feature_conv.shape
    output_cam = []
    for idx in class_idx:
        cam = weight_softmax[idx].dot(feature_conv.reshape((nc, h*w)))
        cam = cam.reshape(h, w)
        cam_img = (cam - cam.min()) / (cam.max() - cam.min())  # normalize
        cam_img = np.uint8(255 * cam_img)
        output_cam.append(cv2.resize(cam_img, size_upsample))
    return output_cam


normalize = transforms.Normalize(
   mean=[0.485, 0.456, 0.406],
   std=[0.229, 0.224, 0.225]
)
preprocess = transforms.Compose([
   transforms.Resize((224, 224)),
   transforms.ToTensor(),
   normalize
])

response = requests.get(IMG_URL)
img_pil = Image.open(io.BytesIO(response.content))
img_pil.save('test.jpg')

img_tensor = preprocess(img_pil)
img_variable = Variable(img_tensor.unsqueeze(0))
logit = net(img_variable)

# download the imagenet category list
classes = {int(key): value for (key, value)
          in requests.get(LABELS_URL).json().items()}
# classes = {int(key): value for (key, value)
#           in load_json.items()}


# 结果有1000类,进行排序
h_x = F.softmax(logit, dim=1).data.squeeze()
probs, idx = h_x.sort(0, True)
probs = probs.numpy()
idx = idx.numpy()

# output the prediction 取前5
for i in range(0, 5):
    print('{:.3f} -> {}'.format(probs[i], classes[idx[i]]))

# generate class activation mapping for the top1 prediction
CAMs = returnCAM(features_blobs[0], weight_softmax, [idx[0]])

# render the CAM and output
print('output CAM.jpg for the top1 prediction: %s'%classes[idx[0]])
img = cv2.imread('test.jpg')
height, width, _ = img.shape
heatmap = cv2.applyColorMap(cv2.resize(CAMs[0],(width, height)), cv2.COLORMAP_JET)
result = heatmap * 0.3 + img * 0.5
cv2.imwrite('CAM.jpg', result)

结果:0.678 -> mountain bike, all-terrain bike, off-roader
          0.088 -> bicycle-built-for-two, tandem bicycle, tandem
         0.042 -> unicycle, monocycle
         0.038 -> horse cart, horse-cart
         0.019 -> lakeside, lakeshore
         output CAM.jpg for the top1 prediction: mountain bike, all-terrain bike, off-roader

以上是所有代码,对容易遇到的问题做个解释:

1.由于网络问题下载不下来json文件:

urllib3.exceptions.MaxRetryError: HTTPConnectionPool(host='media.mlive.com', port=80):

方法:手动把文件下载下来,放在同一个项目下,用被注释掉的代码:

jsonfile = r'D:\python\Camtest\labels.json'   # 换成自己的地址
with open(jsonfile, 'r') as load_f:
    load_json = json.load(load_f)




# 并把下面内容打开
classes = {int(key): value for (key, value)
          in load_json.items()}

2.由于网络问题加载不出来预训练的网络,我就加载不出来,所以 pretrained=False,并去下载预训练好的参数,下载过程详见:https://blog.csdn.net/u014264373/article/details/85332181

3.关于hook住中间特征不懂得去百度: register_forward_hook

4.结果只展示了top5的预测结果。

小白教程

 

 

 

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(pytorch)