题目
Minimum Cut
Problem Description
Given a simple unweighted graph G (an undirected graph containing no loops nor multiple edges) with n nodes and m edges. Let T be a spanning tree of G.
We say that a cut in G respects T if it cuts just one edges of T.
Since love needs good faith and hypocrisy return for only grief, you should find the minimum cut of graph G respecting the given spanning tree T.
Input
The input contains several test cases.
The first line of the input is a single integer t (1≤t≤5) which is the number of test cases.
Then t test cases follow.
Each test case contains several lines.
The first line contains two integers n (2≤n≤20000) and m (n−1≤m≤200000).
The following n−1 lines describe the spanning tree T and each of them contains two integers u and v corresponding to an edge.
Next m−n+1 lines describe the undirected graph G and each of them contains two integers u and v corresponding to an edge which is not in the spanning tree T.
Output
For each test case, you should output the minimum cut of graph G respecting the given spanning tree T.
Sample Input
1
4 5
1 2
2 3
3 4
1 3
1 4
Sample Output
Case #1: 2
Source
2015 ACM/ICPC Asia Regional Shenyang Online
思路:
沈阳站网赛一次A,很有成就感啊,尤其在通过率那么高的情况下~~~
题目要求删除最少的边使得G图变得不连通,其中一条边属于G的生成树T,问最少删几条边。
记td为点在树上的度,gd为点在图上的度。因为要删一条生成树上的边使图不连通,则点在树上的度为1的这个点才可以删,否则删掉了一条在树上的边,这个点仍在图的生成树上,无论怎么删图上的边,这个图都不会不连通。那么,筛出来在树上度为1的点集,在里面找在图上的度最小的点相加即是结果。
代码
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
typedef long long LL;
typedef long double real;
typedef vector<int> VI;
#define mems0(s) memset(s,0,sizeof(s))
#define mems_1(s) memset(s,-1,sizeof(s))
#define memsINF(s) memset(s,INF,sizeof(s))
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
/**************************************************************
Problem: hdu5452Minimum Cut
Ordering: 图论
Thought: 点在树上的度为1的点找点在图上度最小的点
Result: Accepted
Author: wygdove
****************************************************************/
const double eps = 1e-9;
const double pi=acos(-1.0);
#define INF 0x3f3f3f3f
#define MINN -0x3f3f3f3f
#define MAXN 0x3f3f3f3f
#define MOD 10007
#define NUM 20008
int td[NUM];
int gd[NUM];
bool vis[NUM];
int main()
{
cin.sync_with_stdio(false);
cout.sync_with_stdio(false);
//freopen("mu.in","r",stdin);
//freopen("out.out","w",stdout);
int T;
int n,m;
int a,b;
int ans;
scanf("%d",&T);
for(int cnt=1;cnt<=T;cnt++)
{
mems0(td);
mems0(gd);
mems0(vis);
scanf("%d%d",&n,&m);
for(int i=0;i1;i++)
{
scanf("%d%d",&a,&b);
td[a]++;td[b]++;
if(td[a]>1)vis[a]=1;
if(td[b]>1)vis[b]=1;
}
for(int i=0;i1;i++)
{
scanf("%d%d",&a,&b);
gd[a]++;gd[b]++;
}
ans=INF;
for(int i=1;i<=n;i++)
{
if(!vis[i])
ans=ans<(td[i]+gd[i])?ans:(td[i]+gd[i]);
}
printf("Case #%d: %d\n",cnt,ans);
}
fclose(stdin);
fclose(stdout);
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。