ZynqNet解析(四)FPGA端程序解析

背景:ZynqNet能在xilinx的FPGA上实现deep compression的网络,FPGA端程序运用传入每层数据运算后存在DRAM上。

目的:读懂ZynqNet的FPGA端的代码。

源码地址:https://github.com/dgschwend/zynqnet

目录

程序包括:

1. 读取每层信息

1.1 给所有block设置layer信息

1.2 加载权重预加载图像

2. 运算

2.1 image piexl to ICache

2.2 stride=2时

2.3  for channel in

 2.3.1 processInputChannel

2.3.2 setPixelWriteBack

2.3 for channels out

2.3.1 post process

2.3.2 gloabl_pool


FPGA端代码经过HLS高层次综合为硬件语言实现在FPGA上。为fpga_top.cpp与fpga_top.hpp

程序包括:

  • fpga_top
  • gpool_cache
  • image_cache
  • weights_cache
  • output_cache
  • processing_element
  • memory_controller
  • (数据定义中fpga_top.hpp需要包含了network.hpp与netconfig.hpp)

ZynqNet解析(四)FPGA端程序解析_第1张图片

1. 读取每层信息

// fpga_top
void fpga_top(layer_t layer, data_t *SHARED_DRAM, unsigned int weights_offset,
              weightaddr_t num_weights, unsigned int input_offset) {
#pragma HLS INTERFACE m_axi depth = DRAM_DEPTH port = SHARED_DRAM offset = \
    slave bundle = memorybus register
#pragma HLS INTERFACE s_axilite port = layer bundle = axilite  register
#pragma HLS INTERFACE s_axilite port = num_weights bundle = axilite  register
#pragma HLS INTERFACE s_axilite port = weights_offset bundle = axilite  register
#pragma HLS INTERFACE s_axilite port = input_offset bundle = axilite  register
#pragma HLS INTERFACE s_axilite port = return bundle = axilite  register

通过axi-Lite接口读取由CPU传输过来的每层的信息。包括DRAM的地址,层的信息,权重的偏移地址,权重数量,输入的偏移地址。

其中,layer是一个结构体,其中包含了layer的所有信息。在netconfig.hpp中定义。

layer之外的几个变量在cpu_top.cpp中一次性的定义了。只有layer是每层运算都需要传输的信息。

1.1 给所有block设置layer信息

// fpga_top
  //setup memory controller
  MemoryController::setup(SHARED_DRAM, weights_offset, input_offset);

  // Set Layer Configuration
  P_layer_setup : {
  P_setLayerConfigs : {
  ImageCache::setLayerConfig(layer);
  WeightsCache::setLayerConfig(layer, num_weights);
  MemoryController::setLayerConfig(layer);
  ProcessingElement::setLayerConfig(layer);
  }

一共设置了五个元素:这五个元素在c语言中为命名空间,并且为全局变量。

  • MemoryController
  • ImageCache
  • WeightsCache
  • ProcessingElement

1.2 加载权重预加载图像

//fpga_top 
  // Load Weights from DRAM
  WeightsCache::loadFromDRAM(SHARED_DRAM);

  // Preload Row 0 + Pixel (1,0)
  MemoryController::setPixelLoadRow(0);
  ImageCache::preloadRowFromDRAM(SHARED_DRAM);
  MemoryController::setPixelLoadRow(1);
  ImageCache::preloadPixelFromDRAM(SHARED_DRAM);

2. 运算

hight循环,width循环,对于每一个pixel位置

2.1 image piexl to ICache

// fpga_top  for height for width
      // Load Next Pixel (automatically checks #pixels left)
      ImageCache::preloadPixelFromDRAM(SHARED_DRAM);

2.2 stride=2时

// per pixel
      // Stride-2 Skipping
      if (layer.stride == 2 & (x % 2 | y % 2)) {
        LOG("stride-2, skipping pixel\n");
        LOG_LEVEL_DECR;
        continue;
      }

stride为2时,跳过不需要卷积的像素点。(continue为结束单次循环)

2.3  for channel in

ZynqNet解析(四)FPGA端程序解析_第2张图片

 2.3.1 processInputChannel

// fpga top  per pixel  for channels in
ProcessingElement::processInputChannel(y, x, ci, layer.channels_out);
// processing_element.cpp  
void ProcessingElement::processInputChannel(const coordinate_t y,
                                            const coordinate_t x,
                                            const channel_t ci_in,
                                            const channel_t ch_out) {
#pragma HLS inline off
#pragma HLS FUNCTION_INSTANTIATE variable = ci_in

#pragma HLS dataflow

  channel_t ci = ci_in;
  weightaddr_t ci_offset;
  data_t pixel_buffer[9];
#pragma HLS ARRAY_PARTITION variable = pixel_buffer complete dim = 0

  // Preload Image Pixel Buffer (fetch pixels around (y,x,ci))
  preloadPixelsAndPrecalcCIoffset(y, x, ci, ch_out, ci_offset, pixel_buffer);

  // MACC All Output Channels
  processAllCHout(ch_out, ci, ci_offset, pixel_buffer);
}

运用ProcessingElement::processInputChannel函数对所有输入piexl进行MACC运算,然后输出存到OCache之中。

2.3.2 setPixelWriteBack

      // Calculate Output Pixel Coordinates
      dimension_t y_out = (layer.stride == 2) ? (int)y / 2 : (int)y;
      dimension_t x_out = (layer.stride == 2) ? (int)x / 2 : (int)x;
      MemoryController::setupPixelWriteback(y_out, x_out);

      // Select bias coefficients
      // WCache.setInputChannel(layer.channels_in, layer.channels_out);
      weightaddr_t ci_offset =
          WeightsCache::precalcInputOffset(layer.channels_in);

2.3 for channels out

ZynqNet解析(四)FPGA端程序解析_第3张图片

2.3.1 post process

// per pixel  for  channels out
        // Postprocess
        data_t processed = ProcessingElement::postprocess(co, ci_offset);

        // Writeback to DRAM
        MemoryController::writeBackOutputChannel(SHARED_DRAM, co, processed);

进行后续处理,加偏置项和ReLU激活。并且将结果写回DRAM

2.3.2 gloabl_pool

        // Accumulate for Global Pooling (if enabled)
        if (layer.global_pool == true) {
          if (x_out == 0 && y_out == 0)
            GPoolCache::setChannel(co, processed);
          else
            GPoolCache::accumulateChannel(co, processed);
        }

如果有global_pool的话进行globla_pool

 

 

 

 

 

 

 

 

你可能感兴趣的:(FPGA,机器学习,c/c++,zynqNet)