标准形式
M i n f 0 ( x ) Min\qquad f_0(x) Minf0(x)
s . t . f i ( x ) ≤ 0 i = 1 , . . . , m s.t.\qquad f_i(x) \le 0 \quad i=1,...,m s.t.fi(x)≤0i=1,...,m
h i ( x ) = 0 i = 1 , . . . , p \qquad h_i(x)=0 \quad i=1,...,p hi(x)=0i=1,...,p
其中 x ∈ R n x \in R^n x∈Rn,定义域 D D D,最优值 p ∗ p^* p∗
拉格朗日: L : R n × R m × R p → R L:R^n \times R^m \times R^p \rightarrow R L:Rn×Rm×Rp→R
d o m ( L ) = D × R m × R p dom(L)=D \times R^m \times R^p dom(L)=D×Rm×Rp
L ( x , λ , ν ) = f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p ν i h i ( x ) L(x,\lambda,\nu)= f_0(x)+\sum_{i=1}^{m}\lambda_if_i(x)+\sum_{i=1}^{p}\nu_ih_i(x) L(x,λ,ν)=f0(x)+i=1∑mλifi(x)+i=1∑pνihi(x)
拉格朗日对偶函数:
g ( λ , ν ) = inf x ∈ D L ( x , λ , ν ) g(\lambda,\nu)=\inf \limits_{x \in D}L(x,\lambda,\nu) g(λ,ν)=x∈DinfL(x,λ,ν)
inf x ∈ D ( f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p ν i h i ( x ) ) \inf \limits_{x \in D}(f_0(x)+\sum_{i=1}^{m}\lambda_if_i(x)+\sum_{i=1}^{p}\nu_ih_i(x)) x∈Dinf(f0(x)+i=1∑mλifi(x)+i=1∑pνihi(x))
第二个为什么成立呢?
假设 D 子 集 D子集 D子集就是满足s.t.条件的 x x x集合,那么
p ∗ = inf D 子 集 f 0 ( x ) = p^*=\inf\limits_{D子集}f_0(x)= p∗=D子集inff0(x)=
inf D 子 集 f 0 ( x ) + ∑ i = 1 p ν i h i ( x ) ) ≥ \inf\limits_{D子集}f_0(x)+\sum_{i=1}^{p}\nu_ih_i(x)) \ge D子集inff0(x)+i=1∑pνihi(x))≥
inf x ∈ D 子 集 ( f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p ν i h i ( x ) ) ≥ \inf \limits_{x \in D子集}(f_0(x)+\sum_{i=1}^{m}\lambda_if_i(x)+\sum_{i=1}^{p}\nu_ih_i(x)) \ge x∈D子集inf(f0(x)+i=1∑mλifi(x)+i=1∑pνihi(x))≥
inf x ∈ D ( f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p ν i h i ( x ) ) \inf \limits_{x \in D}(f_0(x)+\sum_{i=1}^{m}\lambda_if_i(x)+\sum_{i=1}^{p}\nu_ih_i(x)) x∈Dinf(f0(x)+i=1∑mλifi(x)+i=1∑pνihi(x))
= g ( λ , ν ) =g(\lambda,\nu) =g(λ,ν)
\
m a x g ( λ , ν ) max \qquad g(\lambda,\nu) maxg(λ,ν)
s . t . λ ≥ 0 s.t. \qquad \lambda \ge 0 s.t.λ≥0