字符设备驱动设计到两个重要的结构体cdev和file_operations。在include/linux/cdev.h和include/linux/fs.h文件定义
一、cdev
struct cdev {
struct kobject kobj; //内嵌的kobject对象
struct module *owner; //所属模块
const struct file_operations *ops; //文件操作结构体
struct list_head list;
dev_t dev; //设备号
unsigned int count;
};
设备号dev_t共32位,其中12位位主设备号,20位位次设备号。使用如下宏获取主设备号和次设备号
MAJOR(dev_t dev) //获取主设备号
MINOR(dev_t dev) //获取主设备号
MKDEV(int major,int minor) //通过主设备号和次设备号生成dev_t
void cdev_init(struct cdev *, struct file_operations *); //初始化cdev成员并建立cdev与file_operations之间的连接
struct cdev *cdev_alloc(void); //动态申请一个cdev内存
void cdev_put(struct cdev *p);
int cdev_add(struct cdev *, dev_t, unsigned);//向系统添加和删除一个cdev,完成字符设备的注册和注销。
void cdev_del(struct cdev *);
函数解析
/**
* cdev_init() - initialize a cdev structure
* @cdev: the structure to initialize
* @fops: the file_operations for this device
*
* Initializes @cdev, remembering @fops, making it ready to add to the
* system with cdev_add().
* 内核中两个需要操作的对象,传入的两个需要改变的对象都是指针。
*/
void cdev_init(struct cdev *cdev, const struct file_operations *fops)
{
memset(cdev, 0, sizeof *cdev);
INIT_LIST_HEAD(&cdev->list);
kobject_init(&cdev->kobj, &ktype_cdev_default);
cdev->ops = fops;
}
MAJOR和MINOR两个宏代码解析,定义文件/include/linux/kdev_t.h
#define MINORBITS 20
#define MINORMASK ((1U << MINORBITS) - 1)
#define MAJOR(dev) ((unsigned int) ((dev) >> MINORBITS))
#define MINOR(dev) ((unsigned int) ((dev) & MINORMASK))
#define MKDEV(ma,mi) (((ma) << MINORBITS) | (mi))
代码写的很好,明显是位操作的老手。
二、file_operations
file_operations结构体中的成员函数是字符设备驱动程序设计的主体内容,这些函数在应用程序调用系统调用的时候回被自动调用。
struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
int (*iterate) (struct file *, struct dir_context *);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*mremap)(struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *, fl_owner_t id);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, loff_t, loff_t, int datasync);
int (*aio_fsync) (struct kiocb *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
int (*check_flags)(int);
int (*flock) (struct file *, int, struct file_lock *);
ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
int (*setlease)(struct file *, long, struct file_lock **, void **);
long (*fallocate)(struct file *file, int mode, loff_t offset,
loff_t len);
void (*show_fdinfo)(struct seq_file *m, struct file *f);
#ifndef CONFIG_MMU
unsigned (*mmap_capabilities)(struct file *);
#endif
};
GolbalMem设备驱动例程
#include
#include
#include
#include
#include
#include
#define GLOBALMEM_SIZE 0x1000
#define MEM_CLEAR 0x1
#define GLOBALMEM_MAJOR 230
#define DEVICE_NUM 10
static int globalmem_major = GLOBALMEM_MAJOR;
module_param(globalmem_major, int, S_IRUGO);
struct globalmem_dev {
struct cdev cdev;
unsigned char mem[GLOBALMEM_SIZE];
};
struct globalmem_dev *globalmem_devp;
static int globalmem_open(struct inode *inode, struct file *filp)
{
struct globalmem_dev *dev = container_of(inode->i_cdev,
struct globalmem_dev, cdev);
filp->private_data = dev;
return 0;
}
static int globalmem_release(struct inode *inode, struct file *filp)
{
return 0;
}
static long globalmem_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)
{
struct globalmem_dev *dev = filp->private_data;
switch (cmd) {
case MEM_CLEAR:
memset(dev->mem, 0, GLOBALMEM_SIZE);
printk(KERN_INFO "globalmem is set to zero\n");
break;
default:
return -EINVAL;
}
return 0;
}
static ssize_t globalmem_read(struct file *filp, char __user * buf, size_t size,
loff_t * ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = 0;
struct globalmem_dev *dev = filp->private_data;
if (p >= GLOBALMEM_SIZE)
return 0;
if (count > GLOBALMEM_SIZE - p)
count = GLOBALMEM_SIZE - p;
if (copy_to_user(buf, dev->mem + p, count)) {
ret = -EFAULT;
} else {
*ppos += count;
ret = count;
printk(KERN_INFO "read %u bytes(s) from %lu\n", count, p);
}
return ret;
}
static ssize_t globalmem_write(struct file *filp, const char __user * buf,
size_t size, loff_t * ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = 0;
struct globalmem_dev *dev = filp->private_data;
if (p >= GLOBALMEM_SIZE)
return 0;
if (count > GLOBALMEM_SIZE - p)
count = GLOBALMEM_SIZE - p;
if (copy_from_user(dev->mem + p, buf, count))
ret = -EFAULT;
else {
*ppos += count;
ret = count;
printk(KERN_INFO "written %u bytes(s) from %lu\n", count, p);
}
return ret;
}
static loff_t globalmem_llseek(struct file *filp, loff_t offset, int orig)
{
loff_t ret = 0;
switch (orig) {
case 0:
if (offset < 0) {
ret = -EINVAL;
break;
}
if ((unsigned int)offset > GLOBALMEM_SIZE) {
ret = -EINVAL;
break;
}
filp->f_pos = (unsigned int)offset;
ret = filp->f_pos;
break;
case 1:
if ((filp->f_pos + offset) > GLOBALMEM_SIZE) {
ret = -EINVAL;
break;
}
if ((filp->f_pos + offset) < 0) {
ret = -EINVAL;
break;
}
filp->f_pos += offset;
ret = filp->f_pos;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static const struct file_operations globalmem_fops = {
.owner = THIS_MODULE,
.llseek = globalmem_llseek,
.read = globalmem_read,
.write = globalmem_write,
.unlocked_ioctl = globalmem_ioctl,
.open = globalmem_open,
.release = globalmem_release,
};
static void globalmem_setup_cdev(struct globalmem_dev *dev, int index)
{
int err, devno = MKDEV(globalmem_major, index);
cdev_init(&dev->cdev, &globalmem_fops);
dev->cdev.owner = THIS_MODULE;
err = cdev_add(&dev->cdev, devno, 1);
if (err)
printk(KERN_NOTICE "Error %d adding globalmem%d", err, index);
}
static int __init globalmem_init(void)
{
int ret;
int i;
dev_t devno = MKDEV(globalmem_major, 0);
if (globalmem_major)
ret = register_chrdev_region(devno, DEVICE_NUM, "globalmem");//这个globamem名字将会成为/proc/devices里面的名字
else {
ret = alloc_chrdev_region(&devno, 0, DEVICE_NUM, "globalmem");
globalmem_major = MAJOR(devno);
}
if (ret < 0)
return ret;
globalmem_devp = kzalloc(sizeof(struct globalmem_dev) * DEVICE_NUM, GFP_KERNEL);//分配一个大的空间,然后将空间分割后分配给不同的子设备。
if (!globalmem_devp) {
ret = -ENOMEM;
goto fail_malloc;
}
for (i = 0; i < DEVICE_NUM; i++)
globalmem_setup_cdev(globalmem_devp + i, i);
return 0;
fail_malloc:
unregister_chrdev_region(devno, DEVICE_NUM);
return ret;
}
module_init(globalmem_init);
static void __exit globalmem_exit(void)
{
int i;
for (i = 0; i < DEVICE_NUM; i++)
cdev_del(&(globalmem_devp + i)->cdev); //删除字符设备实体
kfree(globalmem_devp); //释放一开始申请的大块空间
unregister_chrdev_region(MKDEV(globalmem_major, 0), DEVICE_NUM);//注销系统里面的字符设备
//释放工作很重要,不释放会导致系统异常或混乱。
}
module_exit(globalmem_exit);
MODULE_LICENSE("GPL v2");
**
Makefile文件
KVERS = $(shell uname -r)
# Kernel modules
obj-m += globalmem.o
obj-m += multi_globalmem.o
# Specify flags for the module compilation.
#EXTRA_CFLAGS=-g -O0
build: kernel_modules
kernel_modules:
make -C /lib/modules/$(KVERS)/build M=$(CURDIR) modules
clean:
make -C /lib/modules/$(KVERS)/build M=$(CURDIR) clean
**
1.加载模块的时候,模块的文件名就是lsmod里面显示的名字
2.注册字符设备的时候,在/proc/devices文件里面可以看到设备的主设备号和注册上的字符设备。如果程序退出时没有注销设备,这些设备会一直保留在系统里,不能使用。
3.程序注册了字符设备,需要使用mknode在/dev目录里面创建入口,如果不要这个入口,直接像普通文件一样rm删除就行。