几种排序算法

转自:点击打开链接 并结合部分个人修改

1. 简述

    本文主要说明一些常用的内部排序算法的分类、复杂性和稳定性。主要基于现在的理解和学习,详细准确的复杂度可以参见维基百科等比较权威的网站,对于一些算法的不同实现,复杂度也不同,这里给出的复杂度都是相对较好的算法的复杂度。

2. 分类
   几种排序算法_第1张图片

3. 复杂性和稳定性

空间复杂度定义

空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度(考虑的是全局辅助空间,对于递归而言,每一次生成的局部空间用完就释放了,因此不计算在内),记做S(n)=O(f(n))。比如直接插入排序时间复杂度是O(n^2),空间复杂度是O(1) 。而一般的递归算法就要有O(n)的空间复杂度了,因为每次递归都要存储返回信息,但特别注意也可以通过一些办法使得递归不返回数据,从而降低空间复杂度,例如空间复杂度为O(1)的归并排序:点击打开链接。一个算法的优劣主要从算法的执行时间和所需要占用的存储空间两个方面衡量。

稳定性定义:

假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,ri=rj,且ri在rj之前,而在排序后的序列中,ri仍在rj之前,则称这种排序算法是稳定的;否则称为不稳定的。

各种常用排序算法

类别

排序方法

时间复杂度

空间复杂度

稳定性

平均情况

最好情况

最坏情况

插入排序

直接插入

O(n2)

O(n)

O(n2)

O(1)

稳定

shell排序

O(n1.3)

O(n)

O(n2)

O(1)

不稳定

选择排序

直接选择

O(n2)

O(n2)

O(n2)

O(1)

不稳定

堆排序

O(nlog2n)

O(nlog2n)

O(nlog2n)

O(1)

不稳定

交换排序

冒泡排序

O(n2)

O(n2)

O(n2)

O(1)

稳定

快速排序

O(nlog2n)

O(nlog2n)

O(n2)

O(log2n)

不稳定

归并排序

O(nlog2n)

O(nlog2n)

O(nlog2n)

O(n)

稳定

基数排序

O(d(r+n))

O(d(n+rd))

O(d(r+n))

O(rd+n)

稳定

注:基数排序的复杂度中,r代表数据个数,d代表关键字维度,n代表箱子的个数

  

时间复杂度和部分空间复杂度分析

    冒泡排序:在已经有序的情况,取得O(N)的复杂度。
    快速排序:每次递归都是N的复杂度,递归次数根据序列有关系,当已经有序的情况下,递归N次,时间复杂度为O(N*LogN)。就空间复杂度来说,主要是递归造成的栈空间的使用,最好情况,递归树的深度为log2n,其空间复杂度也就为O(logn),最坏情况,需要进行n‐1递归调用,其空间复杂度为O(n),平均情况,空间复杂度也为O(logn)。对于快排的优化,可以参考:点击打开链接。
    插入排序:在已经有序的情况,取得O(N)的复杂度。
    希尔排序:最差时间和平均时间都要根据步长数组来判断,现在最好算法的最差时间复杂度,为O(N*LogN)。空间主要是步长数组需要的。一般步长之间不要存在公因子。
    插入排序:交换次数比冒泡排序少多了,由于交换所需CPU时间比比较所需的CPU时间多,n值较小时,选择排序比冒泡排序快。
    堆排序:  堆排序属于选择排序,选择N-1次,每次从堆中选择一个,因此最差就是N*LogN。最好的时间无法准确估计,基本上也是N*LogN这个程度。空间复杂度,堆排序(以最小堆为例)每次将最小元素上升到堆顶,获取之,然后删除改元素,把堆中最后一个元素放到堆顶,重复上述操作。由于在排序中只存在1个元素的交换,所以空间复杂度为O(1)

注意:快排和堆排空间复杂度的区分。虽然都有递归调用,但是快排每次递归是需要返回值的,因此空间复杂度就是栈的深度O(logn)而堆排则是就地调整,每次就是交换一下栈顶元素,调整好就调整下一个,并不存在值的返回,因此复杂度为O(1)
    归并排序:这个排序算法的复杂度与数组初始化序列无关,归并次数为LogN次,每次复杂度是O(N),因此复杂度都是O(N*LogN)。就空间复杂度考虑,算法处理过程中,需要一个大小为n的临时存储空间用以保存合并序列。若想要令空间复杂度为O(1),则需要在Merge时利用已有的两个数组,用插入排序将数组B插入到数组A,但这样的代价是又多一层循环(插入排序),因此时间复杂度变为了O(n^2 logn).详见:点击打开链接。
    基数排序:K是数组中,数值的最大位数。对于int来说,使用十进制的话,K<=10。稳定性来说,基数排序要求每次必须使用稳定排序,否则最终得不到正确结果。所以这里的稳定是必须的,而不可能存在不稳定的。而其他的排序,比如冒泡排序,可以改写成不稳定的,这点需要注意。
    计数排序:K是数组中,数值的范围,即K=Max-Min+1。对于int来说,最坏的情况为K=2^32,即数组内包含了最大正数和最小负数。
    桶排序:由于桶排序可能有的桶没有数据,那么假设N个数据,只被分到了M个桶中,O(N)+O(M*(N/M)*log(N/M))=O(N+N*(logN-logM))=O(N+N*logN-N*logM) =O(N+N*(logN-logM)),当分到的桶越多时,越是接近N。计数排序可以看作桶排序的一个特例,将桶开的很大,直到能够保证每个不同的数值都被分到一个桶中。


稳定性分析:

堆排序、 快速排序、 希尔排序、 直接选择排序不是稳定的排序算法,而 基数排序、 冒泡排序、 直接插入排序、 折半插入排序、 归并排序是稳定的排序算法。
首先,排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。在简单形式化一下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。
其次,说一下稳定性的好处。排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。基数排序就 是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。
回到主题,现在分析一下常见的排序算法的稳定性,每个都给出简单的理由。
(1)冒泡排序
冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。所以,如果两个元素相等,我想你是不会再无 聊地把他们俩交换一下的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改 变,所以冒泡排序是一种稳定排序算法。
(2)选择排序
选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n-1个元素,第n个 元素不用选择了,因为只剩下它一个最大的元素了。那么,在一趟选择,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么 交换后稳定性就被破坏了。比较拗口,举个例子,序列5 8 5 2 9, 我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。
(3)插入排序
插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。当然,刚开始这个有序的小序列只有1个元素,就是第一个元素。比较是从有序序列的末尾开 始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置。如果碰见一个和插入元素相 等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳 定的。
(4)快速排序
快速排序有两个方向,左边的i下标一直往右走,当a[i] <= a[center_index],其中center_index是中枢元素的数组下标,一般取为数组第0个元素。而右边的j下标一直往左走,当a[j] > a[center_index]。如果i和j都走不动了,i <= j, 交换a[i]和a[j],重复上面的过程,直到i>j。 交换a[j]和a[center_index],完成一趟快速排序。在中枢元素和a[j]交换的时候,很有可能把前面的元素的稳定性打乱,比如序列为 5 3 3 4 3 8 9 10 11, 现在中枢元素5和3(第5个元素,下标从1开始计)交换就会把元素3的稳定性打乱,所以快速排序是一个不稳定的排序算法,不稳定发生在中枢元素和a[j] 交换的时刻。
(5)归并排序
归并排序是把序列递归地分成短序列,递归出口是短序列只有1个元素(认为直接有序)或者2个序列(1次比较和交换),然后把各个有序的段序列合并成一个有 序的长序列,不断合并直到原序列全部排好序。可以发现,在1个或2个元素时,1个元素不会交换,2个元素如果大小相等也没有人故意交换,这不会破坏稳定 性。那么,在短的有序序列合并的过程中,稳定是是否受到破坏?没有,合并过程中我们可以保证如果两个当前元素相等时,我们把处在前面的序列的元素保存在结 果序列的前面,这样就保证了稳定性。所以,归并排序也是稳定的排序算法。
(6)基数排序
基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优 先级排序,最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以其是稳定的排序算法。
(7)希尔排序(shell)
希尔排序是按照不同步长对元素进行插入排序,当刚开始元素很无序的时候,步长最大,所以插入排序的元素个数很少,速度很快;当元素基本有序了,步长很小, 插入排序对于有序的序列效率很高。所以,希尔排序的时间复杂度会比o(n^2)好一些。由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元 素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。
(8)堆排序
我们知道堆的结构是节点i的孩子为2*i和2*i+1节点,大顶堆要求父节点大于等于其2个子节点,小顶堆要求父节点小于等于其2个子节点。在一个长为n 的序列,堆排序的过程是从第n/2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择当然不会破坏稳定性。但当为n /2-1, n/2-2, ...1这些个父节点选择元素时,就会破坏稳定性。有可能第n/2个父节点交换把后面一个元素交换过去了,而第n/2-1个父节点把后面一个相同的元素没 有交换,那么这2个相同的元素之间的稳定性就被破坏了。所以,堆排序不是稳定的排序算法。
综上,得出结论: 选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法,而冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法。

4. 参考

    维基百科
    三种线性排序算法 计数排序、桶排序与基数排序    http://www.byvoid.com/blog/sort-radix/
    桶排序与基排序    http://anwj336.blog.163.com/blog/static/8941520920109535025216/

    百度百科

你可能感兴趣的:(c++,排序算法)