使用CNN算法,特征提取使用二维向量:
X, Y, testX, testY = mnist.load_data(one_hot=True)
X = X.reshape([-1, 28, 28, 1])
testX = testX.reshape([-1, 28, 28, 1])
实例化CNN算法并训练10轮:
model = tflearn.DNN(network, tensorboard_verbose=0)
model.fit({'input': X}, {'target': Y}, n_epoch=5,
validation_set=({'input': testX}, {'target': testY}),
snapshot_step=100, show_metric=True, run_id='mnist')
整个过程如下:
(1)读取MNIST数据集数据。
(2)转换成二维向量。
(3)按照文件划分为训练集合测试集。
(4)使用CNN算法在训练集上训练,获得模型数据
(5)使用模型数据在测试集上进行预测。
(6)验证CNN算法预测效果。
# -*- coding: utf-8 -*-
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.normalization import local_response_normalization
from tflearn.layers.estimator import regression
from sklearn.neural_network import MLPClassifier
from sklearn.feature_extraction.text import CountVectorizer
import os
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn import svm
from sklearn import neighbors
# Data loading and preprocessing
import tflearn.datasets.mnist as mnist
#构建卷积神经网络
def do_cnn_2d(X, Y, testX, testY ):
# Building convolutional network
network = input_data(shape=[None, 28, 28, 1], name='input')
network = conv_2d(network, 32, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = conv_2d(network, 64, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = fully_connected(network, 128, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 10, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.01,
loss='categorical_crossentropy', name='target')
# Training
model = tflearn.DNN(network, tensorboard_verbose=0)
model.fit({'input': X}, {'target': Y}, n_epoch=5,
validation_set=({'input': testX}, {'target': testY}),
snapshot_step=100, show_metric=True, run_id='mnist')
if __name__ == "__main__":
print("Hello MNIST")
# 2d,2维提取特征
X, Y, testX, testY = mnist.load_data(one_hot=True)
X = X.reshape([-1, 28, 28, 1])
testX = testX.reshape([-1, 28, 28, 1])
#cnn
do_cnn_2d(X, Y, testX, testY)
运行过程,得到如下结果,准确率可达97.52%。