前些日子读了一篇关于人脸识别的文章,age and gender classificiation using convolutional neural networks,这是一篇发表在cvpr2015的一篇文章,文章写得很好,条理清晰,逻辑性强,非常适合深度学习者学习,在这里特别做一个相关笔记。
当然,我也尝试着去实现这篇论文,文章中说到要用adience benchmark人脸数据库,我上网上找了找并没有找到这个数据库,于是乎我只能找其他的数据库来代替。开始的时候自己搜集数据库(汗!),搜集了大概1000张人脸,去训练神经网络时损失函数直接爆炸,完全不收敛,折腾了好久才想到可能是数据库样本太小的原因,后来在知乎大牛的指导下扩大自己的数据库,然后在caffe上运行试验,结果不但收敛了,准确率竟能达到约98%!!!
在实现的过程中需要注意的是数据库的大小一定不能太小,否则会不收敛,再者,要适当选择网络中的参数。我用cuda-convnet(也就是cifar10分类问题中比较流行的一个网络结构)来训练速度很快,最高准确率能达到96%,用论文中所述的网络结构时,速度要慢很多,但是最后准确率最高达到98.5%。
我只实现了人脸性别检测,人脸年龄检测问题可以说是换汤不换药,因为数据库准备需要大量的人力物力,所以就没有继续做下去!
卷积神经网络的结构如下图:
多的不说,先看看代码:
age_net:
name: "facenet"
layers {
name: "data"
type: DATA
top: "data"
top: "label"
data_param {
source: "data/mywork/face_train_lmdb"
backend: LMDB
batch_size: 50
}
transform_param {
crop_size: 227
mean_file: "data/mywork/face_mean.binaryproto"
mirror: true
}
include: { phase: TRAIN }
}
layers {
name: "data"
type: DATA
top: "data"
top: "label"
data_param {
source: "data/mywork/face_val_lmdb"
backend: LMDB
batch_size: 50
}
transform_param {
crop_size: 227
mean_file: "data/mywork/face_mean.binaryproto"
mirror: false
}
include: { phase: TEST }
}
layers {
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 96
kernel_size: 7
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layers {
name: "relu1"
type: RELU
bottom: "conv1"
top: "conv1"
}
layers {
name: "pool1"
type: POOLING
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layers {
name: "norm1"
type: LRN
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layers {
name: "conv2"
type: CONVOLUTION
bottom: "norm1"
top: "conv2"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layers {
name: "relu2"
type: RELU
bottom: "conv2"
top: "conv2"
}
layers {
name: "pool2"
type: POOLING
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layers {
name: "norm2"
type: LRN
bottom: "pool2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layers {
name: "conv3"
type: CONVOLUTION
bottom: "norm2"
top: "conv3"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layers{
name: "relu3"
type: RELU
bottom: "conv3"
top: "conv3"
}
layers {
name: "pool5"
type: POOLING
bottom: "conv3"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layers {
name: "fc6"
type: INNER_PRODUCT
bottom: "pool5"
top: "fc6"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
inner_product_param {
num_output: 512
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layers {
name: "relu6"
type: RELU
bottom: "fc6"
top: "fc6"
}
layers {
name: "drop6"
type: DROPOUT
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layers {
name: "fc7"
type: INNER_PRODUCT
bottom: "fc6"
top: "fc7"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
inner_product_param {
num_output: 512
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layers {
name: "relu7"
type: RELU
bottom: "fc7"
top: "fc7"
}
layers {
name: "drop7"
type: DROPOUT
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layers {
name: "fc8"
type: INNER_PRODUCT
bottom: "fc7"
top: "fc8"
blobs_lr: 10
blobs_lr: 20
weight_decay: 1
weight_decay: 0
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layers {
name: "accuracy"
type: ACCURACY
bottom: "fc8"
bottom: "label"
top: "accuracy"
include: { phase: TEST }
}
layers {
name: "loss"
type: SOFTMAX_LOSS
bottom: "fc8"
bottom: "label"
top: "loss"
}
结构非常简单,经过大概4个小时的训练达到预期准确率。