使用索引为pandas DataFrame中的特定单元格设置值

本文翻译自:Set value for particular cell in pandas DataFrame using index

I've created a Pandas DataFrame 我创建了一个Pandas DataFrame

df = DataFrame(index=['A','B','C'], columns=['x','y'])

and got this 并得到了

x    y
A  NaN  NaN
B  NaN  NaN
C  NaN  NaN


Then I want to assign value to particular cell, for example for row 'C' and column 'x'. 然后,我想为特定的单元格赋值,例如行“ C”和列“ x”。 I've expected to get such result: 我期望得到这样的结果:

x    y
A  NaN  NaN
B  NaN  NaN
C  10  NaN

with this code: 使用此代码:

df.xs('C')['x'] = 10

but contents of df haven't changed. 但是df内容没有改变。 It's again only NaN s in DataFrame. 再次仅是DataFrame中的NaN

Any suggestions? 有什么建议么?


#1楼

参考:https://stackoom.com/question/w4xU/使用索引为pandas-DataFrame中的特定单元格设置值


#2楼

RukTech's answer , df.set_value('C', 'x', 10) , is far and away faster than the options I've suggested below. RukTech的答案 df.set_value('C', 'x', 10)比我在下面建议的选项要快得多。 However, it has been slated for deprecation . 但是,已将其淘汰

Going forward, the recommended method is .iat/.at . 展望未来, 推荐的方法是.iat/.at


Why df.xs('C')['x']=10 does not work: 为什么df.xs('C')['x']=10不起作用:

df.xs('C') by default, returns a new dataframe with a copy of the data, so df.xs('C')默认情况下,返回带有数据副本的新数据df.xs('C') ,因此

df.xs('C')['x']=10

modifies this new dataframe only. 仅修改此新数据框。

df['x'] returns a view of the df dataframe, so df['x']返回df数据帧的视图,因此

df['x']['C'] = 10

modifies df itself. 修改df本身。

Warning : It is sometimes difficult to predict if an operation returns a copy or a view. 警告 :有时很难预测操作是否返回副本或视图。 For this reason the docs recommend avoiding assignments with "chained indexing" . 因此, 文档建议避免使用“链接索引”进行赋值 。


So the recommended alternative is 所以推荐的替代方法是

df.at['C', 'x'] = 10

which does modify df . 确实会修改df


In [18]: %timeit df.set_value('C', 'x', 10)
100000 loops, best of 3: 2.9 µs per loop

In [20]: %timeit df['x']['C'] = 10
100000 loops, best of 3: 6.31 µs per loop

In [81]: %timeit df.at['C', 'x'] = 10
100000 loops, best of 3: 9.2 µs per loop

#3楼

The recommended way (according to the maintainers) to set a value is: 推荐的方法(根据维护者)是:

df.ix['x','C']=10

Using 'chained indexing' ( df['x']['C'] ) may lead to problems. 使用“链式索引”( df['x']['C'] )可能会导致问题。

See: 看到:

  • https://stackoverflow.com/a/21287235/1579844 https://stackoverflow.com/a/21287235/1579844
  • http://pandas.pydata.org/pandas-docs/dev/indexing.html#indexing-view-versus-copy http://pandas.pydata.org/pandas-docs/dev/indexing.html#indexing-view-versus-copy
  • https://github.com/pydata/pandas/pull/6031 https://github.com/pydata/pandas/pull/6031

#4楼

Update: The .set_value method is going to be deprecated . 更新: .set_value方法将不推荐使用 。 .iat/.at are good replacements, unfortunately pandas provides little documentation .iat/.at是很好的替代品,不幸的是熊猫提供的文件很少


The fastest way to do this is using set_value . 最快的方法是使用set_value 。 This method is ~100 times faster than .ix method. 此方法比.ix方法快100倍。 For example: 例如:

df.set_value('C', 'x', 10)


#5楼

尝试使用df.loc[row_index,col_indexer] = value


#6楼

This is the only thing that worked for me! 这是唯一对我有用的东西!

df.loc['C', 'x'] = 10

Learn more about .loc here . 在此处了解有关.loc更多信息。

你可能感兴趣的:(python,pandas,dataframe)