题意:给定一颗有根数,然后有m个询问,对于每个询问,求子树的中位数。最后按要求hash输出答案。
思路:对于子树问题,很显然是dfs序,然后就化成了区间第 k 大问题。可以说这个题是 裸的 dfs序 + 裸的主席树
有一点需要注意,要提前处理所有子树的答案,因为询问数是1e6,而结点数是1e5,在每个询问中query,会T。
贴上代码:
#include
#define debug(x) cout << "[" << #x <<": " << (x) <<"]"<< endl
#define pii pair
#define clr(a,b) memset((a),b,sizeof(a))
#define rep(i,a,b) for(int i = a;i < b;i ++)
#define pb push_back
#define MP make_pair
#define LL long long
#define ull unsigned LL
#define ls i << 1
#define rs i << 1 + 1
#define INT(t) int t; scanf("%d",&t)
using namespace std;
const int maxn = 1e5 + 10;
const int mod = 1000000007;
int head[maxn];
struct xx{
int u,v,nex;
xx(){}
xx(int u,int v,int nex):
u(u),v(v),nex(nex){}
}edg[maxn * 10];
int cnt = 0;
int IN[maxn],OUT[maxn],dfsx[maxn * 2];
int a[maxn];
int coun = 0;
void dfs(int p,int fa){
dfsx[++ coun] = p;
IN[p] = coun;
for(int i = head[p]; ~i;i = edg[i].nex){
int v = edg[i].v;
if(fa == v) continue;
dfs(v,p);
}
dfsx[++ coun] = p;
OUT[p] = coun;
}
const int M = maxn * 40;
int T[M],lson[M],rson[M],C[M];
int X[maxn * 2],K[maxn * 2];
int tot = 0,en;
void init(){
rep(i,0,maxn) head[i] = -1;
cnt = coun = tot = 0;
}
int getId(int x){
int pos = lower_bound(X + 1,X + 1 + en,x) - X;
return pos;
}
int build(int l,int r){
int rt = tot ++;
C[rt] = 0;
if(l != r){
int mid = (l + r) >> 1;
lson[rt] = build(l,mid);
rson[rt] = build(mid + 1,r);
}
return rt;
}
int update(int rt,int pos,int val){
int newrt = tot ++,tmp = newrt;
C[newrt] = C[rt] + val;
int l = 1,r = en;
while(l < r){
int mid = (l + r) >> 1;
if(pos <= mid){
lson[newrt] = tot ++;
rson[newrt] = rson[rt];
newrt = lson[newrt];
rt = lson[rt];
r = mid;
}
else {
rson[newrt] = tot ++;
lson[newrt] = lson[rt];
newrt = rson[newrt];
rt = rson[rt];
l = mid + 1;
}
C[newrt] = C[rt] + val;
}
return tmp;
}
int query(int lrt,int rrt,int k){
int l = 1,r = en;
while(l < r){
int mid = (l + r) >> 1;
if(C[lson[rrt]] - C[lson[lrt]] >= k){
r = mid;
lrt = lson[lrt];
rrt = lson[rrt];
}
else {
l = mid + 1;
k -= C[lson[rrt]] - C[lson[lrt]];
lrt = rson[lrt];
rrt = rson[rrt];
}
}
return l;
}
double ANS[maxn];
int main() {
int t; scanf("%d",&t);
while(t --){
init();
int n,m; scanf("%d%d",&n,&m);
for(int i = 1;i <= n;++ i){
scanf("%d",&a[i]);
}
for(int i = 1;i < n;++ i){
int u,v; scanf("%d%d",&u,&v);
edg[cnt] = xx(u,v,head[u]);
head[u] = cnt ++;
edg[cnt] = xx(v,u,head[v]);
head[v] = cnt ++;
}
dfs(1,-1);//debug(1);
// for(int i = 1;i <= coun;++ i)
// printf("%d ",dfsx[i]);printf("\n");
// for(int i = 1;i <= n;++ i)
// printf("%d %d\n",IN[i],OUT[i]);
for(int i = 1;i <= coun;++ i){
K[i] = a[dfsx[i]];
X[i] = K[i];
}
sort(X + 1,X + 1 + coun);
en = unique(X + 1,X + 1 + coun) - X - 1;
T[0] = build(1,en);//debug(2);
for(int i = 1;i <= coun;++ i){
T[i] = update(T[i - 1],getId(K[i]),1);
}//debug(3);
for(int i = 1;i <= n;++ i){
int num = OUT[i] - IN[i] + 1;
if((num / 2) % 2 != 0){
ANS[i] = X[query(T[IN[i] - 1],T[OUT[i]],num / 2)] * 1.0;
}
else {
ANS[i] = (X[query(T[IN[i] - 1],T[OUT[i]],num / 2)] + X[query(T[IN[i] - 1],T[OUT[i]],num / 2 + 1)]) * 1.0 / 2;
}
}
double ans = 0;
for(int i = 1;i <= m;++ i){
int root; scanf("%d",&root);
ans = fmod(ANS[root] + ans * 10,1.0 * mod);
}
printf("%.1f\n",ans);
}
return 0;
}