You are given a tree with N nodes. The tree nodes are numbered from 1
to N. Each node has an integer weight.We will ask you to perform the following operation:
u v k : ask for the kth minimum weight on the path from node u to node
v
In the first line there are two integers N and M. (N, M <= 100000)
In the second line there are N integers. The ith integer denotes the
weight of the ith node.In the next N-1 lines, each line contains two integers u v, which
describes an edge (u, v).In the next M lines, each line contains three integers u v k, which
means an operation asking for the kth minimum weight on the path from
node u to node v.
For each operation, print its result.
8 5
105 2 9 3 8 5 7 7
1 2
1 3
1 4
3 5
3 6
3 7
4 8
2 5 1
2 5 2
2 5 3
2 5 4
7 8 2
2
8
9
105
7
给你n
个节点,每个节点对应有权值,然后给你n-1
条边,使之形成一棵树,然后有m
组询问,每次询问u v k
,求从u
点到v
点的第k小值.
首先这是一棵树,不是区间,所以不能用主席树直接求出两点之间路径的第k大。本来想用树链剖分搞一搞,但是想到虽然剖分成了若干条链,但是这两个节点不一定在一条链上,所以我们要换一种思路。
我们可以用熟练剖分求助这两个点的lca
,然后构建一棵主席树,但是这个主席树的构建方法和之间构造区间不一样,之前的区间构造方法是[1,i]
前缀和的形式构造,那么对于这个题我们可以对每一个节点到根节点建立前缀和,就能找任意个节点到根节点的第K值,
那么根据主席树的性质,我们就能够计算(u,v)的路上的第K值了
考虑对于任意两个点 u,v u , v ,现在已经构造出了一棵主席树,前缀和存储的是根节点到该节点,那么我们我们就把从根节点到u和从根节点到v的路径加起来,这个过程肯定存在重复计算,我们要把重复的路径减去,重复的路径是从根节点到lca
对应的线段树,但是我们要保留其中一个lca
,所以就是计算出:
sum[u]+sum[v]-sum[lca]-sum[fa[lca]]
这一棵线段树的第k大,直接求出就好
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define mem(a, b) memset(a, b, sizeof(a))
typedef long long ll;
const int N = 5e5 + 10;
const int inf = 0x3f3f3f3f;
int n, m;
int fa[N], dep[N], siz[N], son[N], top[N], w[N];
int first[N], tot;
int b[N], p;
int sum[N << 5], rt[N], lc[N << 5], rc[N << 5], node_cnt;
struct edge
{
int v, next;
} e[N * 2];
void init()
{
mem(first, -1);
tot = 0;
node_cnt = 0;
}
void add_edge(int u, int v)
{
e[tot].v = v;
e[tot].next = first[u];
first[u] = tot++;
}
int qlca(int x, int y)
{
while (top[x] != top[y])
{
if (dep[top[x]] < dep[top[y]])
swap(x, y);
x = fa[top[x]];
}
return dep[x] < dep[y] ? x : y;
}
void build(int &t, int l, int r)
{
t = ++node_cnt;
if (l == r)
return;
int mid = (l + r) >> 1;
build(lc[t], l, mid);
build(rc[t], mid + 1, r);
}
int modify(int o, int l, int r)
{
int oo = ++node_cnt;
lc[oo] = lc[o];
rc[oo] = rc[o];
sum[oo] = sum[o] + 1;
if (l == r)
return oo;
int mid = (l + r) >> 1;
if (p <= mid)
lc[oo] = modify(lc[oo], l, mid);
else
rc[oo] = modify(rc[oo], mid + 1, r);
return oo;
}
int query(int u, int v, int lca, int flca, int l, int r, int k)
{
int mid = (l + r) >> 1, ans;
int x = sum[lc[u]] + sum[lc[v]] - sum[lc[lca]] - sum[lc[flca]];
if (l == r)
return b[l];
if (x >= k)
ans = query(lc[u], lc[v], lc[lca], lc[flca], l, mid, k);
else
ans = query(rc[u], rc[v], rc[lca], rc[flca], mid + 1, r, k - x);
return ans;
}
void dfs1(int u, int f, int deep)
{
fa[u] = f;
dep[u] = deep;
siz[u] = 1;
son[u] = 0;
int maxson = -1;
for (int i = first[u]; ~i; i = e[i].next)
{
int v = e[i].v;
if (v == f)
continue;
dfs1(v, u, deep + 1);
siz[u] += siz[v];
if (siz[v] > maxson)
{
son[u] = v;
maxson = siz[v];
}
}
}
int q;
void dfs2(int u, int topf)
{
top[u] = topf;
p = w[u]; //在这个地方建立主席树
rt[u] = modify(rt[fa[u]], 1, q);
if (!son[u])
return;
dfs2(son[u], topf);
for (int i = first[u]; ~i; i = e[i].next)
{
int v = e[i].v;
if (v == fa[u] || v == son[u])
continue;
dfs2(v, v);
}
}
int main()
{
// freopen("in.txt", "r", stdin);
int u, v, k;
scanf("%d%d", &n, &m);
init();
for (int i = 1; i <= n; i++)
{
scanf("%d", &w[i]);
b[i] = w[i];
}
sort(b + 1, b + n + 1);
for (int i = 1; i <= n - 1; i++)
{
scanf("%d%d", &u, &v);
add_edge(u, v);
add_edge(v, u);
}
q = unique(b + 1, b + n + 1) - (b + 1);
//计算出新的节点的标号
for (int i = 1; i <= n; i++)
w[i] = lower_bound(b + 1, b + q + 1, w[i]) - b;
build(rt[0], 1, q);
dfs1(1, 0, 1);
dfs2(1, 1);
while (m--)
{
scanf("%d%d%d", &u, &v, &k);
int lca = qlca(u, v);
int flca = fa[lca];
int ans = query(rt[u], rt[v], rt[lca], rt[flca], 1, q, k);
printf("%d\n", ans);
}
return 0;
}