字符串hash函数(hashCode的生成)


非常好的外文网站!!!:


General Purpose Hash Function Algorithms

http://www.partow.net/programming/hashfunctions/#top


最终结果:

1.  BKDRHash

2. Blizzard hash

(http://sfsrealm.hopto.org/inside_mopaq/chapter2.htm, http://blog.csdn.net/eaglewood2005/article/details/4394583,  http://blog.sina.com.cn/s/blog_5b29caf701015tpb.html)


**************

Java 版:


今天根据自己的理解重新整理了一下几个字符串hash函数,使用了模板,使其支持宽字符串,代码如下:
[cpp]  view plain copy
  1. /// @brief BKDR Hash Function  
  2. /// @detail 本算法由于在Brian Kernighan与Dennis Ritchie的《The C Programming Language》一书被展示而得名,是一种简单快捷的hash算法,也是Java目前采用的字符串的Hash算法(累乘因子为31)。  
  3. template<class T>  
  4. size_t BKDRHash(const T *str)  
  5. {  
  6.     register size_t hash = 0;  
  7.     while (size_t ch = (size_t)*str++)  
  8.     {         
  9.         hash = hash * 131 + ch;   // 也可以乘以31、131、1313、13131、131313..  
  10.         // 有人说将乘法分解为位运算及加减法可以提高效率,如将上式表达为:hash = hash << 7 + hash << 1 + hash + ch;  
  11.         // 但其实在Intel平台上,CPU内部对二者的处理效率都是差不多的,  
  12.         // 我分别进行了100亿次的上述两种运算,发现二者时间差距基本为0(如果是Debug版,分解成位运算后的耗时还要高1/3);  
  13.         // 在ARM这类RISC系统上没有测试过,由于ARM内部使用Booth's Algorithm来模拟32位整数乘法运算,它的效率与乘数有关:  
  14.         // 当乘数8-31位都为1或0时,需要1个时钟周期  
  15.         // 当乘数16-31位都为1或0时,需要2个时钟周期  
  16.         // 当乘数24-31位都为1或0时,需要3个时钟周期  
  17.         // 否则,需要4个时钟周期  
  18.         // 因此,虽然我没有实际测试,但是我依然认为二者效率上差别不大          
  19.     }  
  20.     return hash;  
  21. }  
  22. /// @brief SDBM Hash Function  
  23. /// @detail 本算法是由于在开源项目SDBM(一种简单的数据库引擎)中被应用而得名,它与BKDRHash思想一致,只是种子不同而已。  
  24. template<class T>  
  25. size_t SDBMHash(const T *str)  
  26. {  
  27.     register size_t hash = 0;  
  28.     while (size_t ch = (size_t)*str++)  
  29.     {  
  30.         hash = 65599 * hash + ch;         
  31.         //hash = (size_t)ch + (hash << 6) + (hash << 16) - hash;  
  32.     }  
  33.     return hash;  
  34. }  
  35. /// @brief RS Hash Function  
  36. /// @detail 因Robert Sedgwicks在其《Algorithms in C》一书中展示而得名。  
  37. template<class T>  
  38. size_t RSHash(const T *str)  
  39. {  
  40.     register size_t hash = 0;  
  41.     size_t magic = 63689;     
  42.     while (size_t ch = (size_t)*str++)  
  43.     {  
  44.         hash = hash * magic + ch;  
  45.         magic *= 378551;  
  46.     }  
  47.     return hash;  
  48. }  
  49. /// @brief AP Hash Function  
  50. /// @detail 由Arash Partow发明的一种hash算法。  
  51. template<class T>  
  52. size_t APHash(const T *str)  
  53. {  
  54.     register size_t hash = 0;  
  55.     size_t ch;  
  56.     for (long i = 0; ch = (size_t)*str++; i++)  
  57.     {  
  58.         if ((i & 1) == 0)  
  59.         {  
  60.             hash ^= ((hash << 7) ^ ch ^ (hash >> 3));  
  61.         }  
  62.         else  
  63.         {  
  64.             hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));  
  65.         }  
  66.     }  
  67.     return hash;  
  68. }  
  69. /// @brief JS Hash Function  
  70. /// 由Justin Sobel发明的一种hash算法。  
  71. template<class T>  
  72. size_t JSHash(const T *str)  
  73. {  
  74.     if(!*str)        // 这是由本人添加,以保证空字符串返回哈希值0  
  75.         return 0;  
  76.     register size_t hash = 1315423911;  
  77.     while (size_t ch = (size_t)*str++)  
  78.     {  
  79.         hash ^= ((hash << 5) + ch + (hash >> 2));  
  80.     }  
  81.     return hash;  
  82. }  
  83. /// @brief DEK Function  
  84. /// @detail 本算法是由于Donald E. Knuth在《Art Of Computer Programming Volume 3》中展示而得名。  
  85. template<class T>  
  86. size_t DEKHash(const T* str)  
  87. {  
  88.     if(!*str)        // 这是由本人添加,以保证空字符串返回哈希值0  
  89.         return 0;  
  90.     register size_t hash = 1315423911;  
  91.     while (size_t ch = (size_t)*str++)  
  92.     {  
  93.         hash = ((hash << 5) ^ (hash >> 27)) ^ ch;  
  94.     }  
  95.     return hash;  
  96. }  
  97. /// @brief FNV Hash Function  
  98. /// @detail Unix system系统中使用的一种著名hash算法,后来微软也在其hash_map中实现。  
  99. template<class T>  
  100. size_t FNVHash(const T* str)  
  101. {  
  102.     if(!*str)   // 这是由本人添加,以保证空字符串返回哈希值0  
  103.         return 0;  
  104.     register size_t hash = 2166136261;  
  105.     while (size_t ch = (size_t)*str++)  
  106.     {  
  107.         hash *= 16777619;  
  108.         hash ^= ch;  
  109.     }  
  110.     return hash;  
  111. }  
  112. /// @brief DJB Hash Function  
  113. /// @detail 由Daniel J. Bernstein教授发明的一种hash算法。  
  114. template<class T>  
  115. size_t DJBHash(const T *str)  
  116. {  
  117.     if(!*str)   // 这是由本人添加,以保证空字符串返回哈希值0  
  118.         return 0;  
  119.     register size_t hash = 5381;  
  120.     while (size_t ch = (size_t)*str++)  
  121.     {  
  122.         hash += (hash << 5) + ch;  
  123.     }  
  124.     return hash;  
  125. }  
  126. /// @brief DJB Hash Function 2  
  127. /// @detail 由Daniel J. Bernstein 发明的另一种hash算法。  
  128. template<class T>  
  129. size_t DJB2Hash(const T *str)  
  130. {  
  131.     if(!*str)   // 这是由本人添加,以保证空字符串返回哈希值0  
  132.         return 0;  
  133.     register size_t hash = 5381;  
  134.     while (size_t ch = (size_t)*str++)  
  135.     {  
  136.         hash = hash * 33 ^ ch;  
  137.     }  
  138.     return hash;  
  139. }  
  140. /// @brief PJW Hash Function  
  141. /// @detail 本算法是基于AT&T贝尔实验室的Peter J. Weinberger的论文而发明的一种hash算法。  
  142. template<class T>  
  143. size_t PJWHash(const T *str)  
  144. {  
  145.     static const size_t TotalBits       = sizeof(size_t) * 8;  
  146.     static const size_t ThreeQuarters   = (TotalBits  * 3) / 4;  
  147.     static const size_t OneEighth       = TotalBits / 8;  
  148.     static const size_t HighBits        = ((size_t)-1) << (TotalBits - OneEighth);      
  149.       
  150.     register size_t hash = 0;  
  151.     size_t magic = 0;     
  152.     while (size_t ch = (size_t)*str++)  
  153.     {  
  154.         hash = (hash << OneEighth) + ch;  
  155.         if ((magic = hash & HighBits) != 0)  
  156.         {  
  157.             hash = ((hash ^ (magic >> ThreeQuarters)) & (~HighBits));  
  158.         }  
  159.     }  
  160.     return hash;  
  161. }  
  162. /// @brief ELF Hash Function  
  163. /// @detail 由于在Unix的Extended Library Function被附带而得名的一种hash算法,它其实就是PJW Hash的变形。  
  164. template<class T>  
  165. size_t ELFHash(const T *str)  
  166. {  
  167.     static const size_t TotalBits       = sizeof(size_t) * 8;  
  168.     static const size_t ThreeQuarters   = (TotalBits  * 3) / 4;  
  169.     static const size_t OneEighth       = TotalBits / 8;  
  170.     static const size_t HighBits        = ((size_t)-1) << (TotalBits - OneEighth);      
  171.     register size_t hash = 0;  
  172.     size_t magic = 0;  
  173.     while (size_t ch = (size_t)*str++)  
  174.     {  
  175.         hash = (hash << OneEighth) + ch;  
  176.         if ((magic = hash & HighBits) != 0)  
  177.         {  
  178.             hash ^= (magic >> ThreeQuarters);  
  179.             hash &= ~magic;  
  180.         }         
  181.     }  
  182.     return hash;  
  183. }  
 

我对这些hash的散列质量及效率作了一个简单测试,测试结果如下:

测试1:对100000个由大小写字母与数字随机的ANSI字符串(无重复,每个字符串最大长度不超过64字符)进行散列:

字符串函数 冲突数 除1000003取余后的冲突数

BKDRHash

0 4826

SDBMHash

2 4814

RSHash

2 4886

APHash

0 4846

ELFHash

1515 6120

JSHash

779 5587

DEKHash

863 5643

FNVHash

2 4872

DJBHash

832 5645

DJB2Hash

695 5309

PJWHash

1515 6120

 

测试2:对100000个由任意UNICODE组成随机字符串(无重复,每个字符串最大长度不超过64字符)进行散列:

字符串函数 冲突数 除1000003取余后的冲突数

BKDRHash

3 4710

SDBMHash

3 4904

RSHash

3 4822

APHash

2 4891

ELFHash

16 4869

JSHash

3 4812

DEKHash

1 4755

FNVHash

1 4803

DJBHash

1 4749

DJB2Hash

2 4817

PJWHash

16 4869

 

测试3:对1000000个随机ANSI字符串(无重复,每个字符串最大长度不超过64字符)进行散列:

字符串函数 耗时(毫秒)

BKDRHash

109

SDBMHash

109

RSHash

124

APHash

187

ELFHash

249

JSHash

172

DEKHash

140

FNVHash

125

DJBHash

125

DJB2Hash

125

PJWHash

234

 

结论:也许是我的样本存在一些特殊性,在对ASCII码字符串进行散列时,PJW与ELF Hash(它们其实是同一种算法)无论是质量还是效率,都相当糟糕;例如:"b5"与“aE",这两个字符串按照PJW散列出来的hash值就是一样的。另外,其它几种依靠异或来散列的哈希函数,如:JS/DEK/DJB Hash,在对字母与数字组成的字符串的散列效果也不怎么好。相对而言,还是BKDR与SDBM这类简单的Hash效率与效果更好。

其他

作者:icefireelf

出处:http://blog.csdn.net/icefireelf/article/details/5796529



**************************************************************************************************************

C++版本:


各种字符串Hash函数比较

常用的字符串Hash函数还有ELFHash,APHash等等,都是十分简单有效的方法。这些函数使用位运算使得每一个字符都对最后的函数值产生影响。另外还有以MD5和SHA1为代表的杂凑函数,这些函数几乎不可能找到碰撞。

常用字符串哈希函数有BKDRHash,APHash,DJBHash,JSHash,RSHash,SDBMHash,PJWHash,ELFHash等等。对于以上几种哈希函数,我对其进行了一个小小的评测。

Hash函数 数据1 数据2 数据3 数据4 数据1得分 数据2得分 数据3得分 数据4得分 平均分
BKDRHash 2 0 4774 481 96.55 100 90.95 82.05 92.64
APHash 2 3 4754 493 96.55 88.46 100 51.28 86.28
DJBHash 2 2 4975 474 96.55 92.31 0 100 83.43
JSHash 1 4 4761 506 100 84.62 96.83 17.95 81.94
RSHash 1 0 4861 505 100 100 51.58 20.51 75.96
SDBMHash 3 2 4849 504 93.1 92.31 57.01 23.08 72.41
PJWHash 30 26 4878 513 0 0 43.89 0 21.95
ELFHash 30 26 4878 513 0 0 43.89 0 21.95

其中数据1为100000个字母和数字组成的随机串哈希冲突个数。数据2为100000个有意义的英文句子哈希冲突个数。数据3为数据1的哈希值与1000003(大素数)求模后存储到线性表中冲突的个数。数据4为数据1的哈希值与10000019(更大素数)求模后存储到线性表中冲突的个数。

经过比较,得出以上平均得分。平均数为平方平均数。可以发现,BKDRHash无论是在实际效果还是编码实现中,效果都是最突出的。APHash也是较为优秀的算法。DJBHash,JSHash,RSHash与SDBMHash各有千秋。PJWHash与ELFHash效果最差,但得分相似,其算法本质是相似的。

在信息修竞赛中,要本着易于编码调试的原则,个人认为BKDRHash是最适合记忆和使用的。

BYVoid原创,欢迎建议、交流、批评和指正。

附:各种哈希函数的C语言程序代码

unsigned int SDBMHash(char *str)
{
    unsigned int hash = 0;

    while (*str)
    {
        // equivalent to: hash = 65599*hash + (*str++);
        hash = (*str++) + (hash << 6) + (hash << 16) - hash;
    }

    return (hash & 0x7FFFFFFF);
}

// RS Hash Function
unsigned int RSHash(char *str)
{
    unsigned int b = 378551;
    unsigned int a = 63689;
    unsigned int hash = 0;

    while (*str)
    {
        hash = hash * a + (*str++);
        a *= b;
    }

    return (hash & 0x7FFFFFFF);
}

// JS Hash Function
unsigned int JSHash(char *str)
{
    unsigned int hash = 1315423911;

    while (*str)
    {
        hash ^= ((hash << 5) + (*str++) + (hash >> 2));
    }

    return (hash & 0x7FFFFFFF);
}

// P. J. Weinberger Hash Function
unsigned int PJWHash(char *str)
{
    unsigned int BitsInUnignedInt = (unsigned int)(sizeof(unsigned int) * 8);
    unsigned int ThreeQuarters    = (unsigned int)((BitsInUnignedInt  * 3) / 4);
    unsigned int OneEighth        = (unsigned int)(BitsInUnignedInt / 8);
    unsigned int HighBits         = (unsigned int)(0xFFFFFFFF) << (BitsInUnignedInt - OneEighth);
    unsigned int hash             = 0;
    unsigned int test             = 0;

    while (*str)
    {
        hash = (hash << OneEighth) + (*str++);
        if ((test = hash & HighBits) != 0)
        {
            hash = ((hash ^ (test >> ThreeQuarters)) & (~HighBits));
        }
    }

    return (hash & 0x7FFFFFFF);
}

// ELF Hash Function
unsigned int ELFHash(char *str)
{
    unsigned int hash = 0;
    unsigned int x    = 0;

    while (*str)
    {
        hash = (hash << 4) + (*str++);
        if ((x = hash & 0xF0000000L) != 0)
        {
            hash ^= (x >> 24);
            hash &= ~x;
        }
    }

    return (hash & 0x7FFFFFFF);
}

// BKDR Hash Function
unsigned int BKDRHash(char *str)
{
    unsigned int seed = 131; // 31 131 1313 13131 131313 etc..
    unsigned int hash = 0;

    while (*str)
    {
        hash = hash * seed + (*str++);
    }

    return (hash & 0x7FFFFFFF);
}

// DJB Hash Function
unsigned int DJBHash(char *str)
{
    unsigned int hash = 5381;

    while (*str)
    {
        hash += (hash << 5) + (*str++);
    }

    return (hash & 0x7FFFFFFF);
}

// AP Hash Function
unsigned int APHash(char *str)
{
    unsigned int hash = 0;
    int i;

    for (i=0; *str; i++)
    {
        if ((i & 1) == 0)
        {
            hash ^= ((hash << 7) ^ (*str++) ^ (hash >> 3));
        }
        else
        {
            hash ^= (~((hash << 11) ^ (*str++) ^ (hash >> 5)));
        }
    }

    return (hash & 0x7FFFFFFF);
}


 看到此,我想大家都在想一个很严重的问题:”如果两个字符串在哈希表中对应的位置相同怎么办?”,毕竟一个数组容量是有限的,这种可能性很大。解决该问题的方法很多,我首先想到的就是用”链表”,感谢大学里学的数据结构教会了这个百试百灵的法宝,我遇到的很多算法都可以转化成链表来解决,只要在哈希表的每个入口挂一个链表,保存所有对应的字符串就OK了。

  然而Blizzard的程序员使用的方法则是更精妙的方法。基本原理就是:他们在哈希表中不是用一个哈希值而是用三个哈希值来校验字符串。如果说两个不同的字符串经过一个哈希算法得到的入口点一致有可能,但用三个不同的哈希算法算出的入口点都一致,那几乎可以肯定是不可能的事了,这个几率是1: 18889465931478580854784,大概是10的 22.3次方分之一,对一个游戏程序来说足够安全了。



Hash查找因为其O(1)的查找性能而著称,被对查找性能要求高的应用所广泛采用。它的基本思想是:
(1) 创建一个定长的线性Hash表,一般可以初始化时指定length;

(2) 设计Hash函数,将关键字key散射到Hash表中。其中hash函数设计是最为关键的,均匀分布、冲突概率小全在它;

(3) 通常采用拉链方法来解决hash冲突问题,即散射到同一个hash表项的关键字,以链表形式来表示(也称为桶backet);

(4) 给定关键字key,就可以在O(1) + O(m)的时间复杂度内定位到目标。其中,m为拉链长度,即桶深。


你可能感兴趣的:(重构C/C++)