使用阻塞式队列处理大数据

前言

我们都知道,JAVA对于文本文件在读时是独占的,即使可以用多线程去读也涉及到一个POS(定位读)的问题,这在设计框架上会带来许多的复杂性,同时也带来代码上的不可维护性以及会经常出一些千奇百怪的错误(多线程程序由其如此)。


传统阻塞式做法的敝病

  • 特点:多线程,阻塞式导入
  • 缺点:阻塞式,导入速度慢,线程状态无法精确记录,速度慢内存开销大

优秀的做法

  • 多线程
  • 非阻塞式
  • 内存开销恒定
  • 线程可以自由增加

我们将采用的做法

在数据提取的设计时基于以下几个指标考虑:

1)内存占用数始终必须恒定值

2)使用多线程非阻塞式算法,即不加线程锁机制

3) 尽可能少的占用数据库的打开游标数和CPU效率

4) 保证数据读和写的速度

使用阻塞式队列处理大数据_第1张图片



在此,我们将利用阻塞队列+多线程来加快我们的大数据文件的处理速度即使用
BlockingQueue queue = new ArrayBlockingQueue(TASK_LIST_SIZE)

为什么要使用BlockingQueue

  • 它会自动阻塞大于Queue Size的写入动作
  • 栈的机制,get一个队列中的item,相应的Queue中的item数就会减少一个
  • 因为有栈的机制,因此我们可以使用Queue中的这个机制无需多写一个Daemon线程来监控我们的所有的items是不是全取完了然后结束线程,更有甚者我看到过许多程序员写一个While循环,循环直至所有的item取完哪怕有很大一部分是在“空转”也在所不惜。
  • 读/处理完全相分离,读完后也一定处理完了

核心代码

读文件代码

public void run() {
	try {
		enumerate(super.fileName, super.colNames);
	} catch (Exception e) {
		logger.error("read txtFileName error, parse excel quit because :"
				+ e.getMessage(), e);
		try {
			Thread.interrupted();
		} catch (Exception ee) {
		}
		} finally {
		try {
			queue.put(DUMMY);
				// BatchTaskQueue.getInstance().taskList.put(DUMMY);
		} catch (Exception ex) {
		}
	}

}
这边需要注意的点有2处:
  • enumerate就是读,在这段代码下还有一个具体的enumerate的实现,它是顶部递归直到把一个文件内所有的ITEM全部queue.put到队列中去
  • 为什么finally块中要有一个queue.put(DUMMY)哈,一般程序员看到这个语句或者碰到一个什么DUMMY的最头疼了,这是什么个玩意的哈?

DUMMY在我们这边是这样定义的

protected static Map DUMMY = new HashMap();
它代表一个“空”的标志,比如说一个文件 有50万条记录,那么我们的queue中其实会放入50万零1条记录,最后那个1条记录就是这个DUMMY,它告诉另一个take即真正处理导出的线程(可能是一堆的线程,因为我们用的是多线程处理)你已经处理到没有记录可以“再让你处理了“,因此呢。。。因此你得结束了。。。所以我在这边说读完文件 ,正好处理完指的就是这个,因此我们在处理线程(子线程)中对这个DUMMY是如下处理的:

while (!done) {
	Map data = (Map) queue.take();
	if (data == EnumerationEnginee.DUMMY) {
		//no data
		queue.put(data);
		done = true;
	} else {
		// if (data != null) {
		for (Iterator it = data.keySet().iterator(); it.hasNext();) {
			String key = String.valueOf(it.next());
			System.out.print("import:>>>[" + key + "]  :  ["+ data.get(key) + "]");
		}
		System.out.println("\n");						
	}
}

处理Queue中item的代码(多线程)

public void run() {
	boolean done = false;
	try {
		synchronized (this) {
			while (!done) {
				Map data = (Map) queue.take();
				if (data == EnumerationEnginee.DUMMY) {
					//no data
					queue.put(data);
					done = true;
				} else {
					// if (data != null) {
					for (Iterator it = data.keySet().iterator(); it.hasNext();) {
						String key = String.valueOf(it.next());
						System.out.print("import:>>>[" + key + "]  :  ["+ data.get(key) + "]");
					}
					System.out.println("\n");						
				}
			}
		}
	} catch (Exception e) {
		logger.error("import file into db error:" + e.getMessage(), e);
		try {
			Thread.interrupted();
		} catch (Exception ie) {
		}
		try {
			queue.put(EnumerationEnginee.DUMMY);
			done = true;
		} catch (Exception ex) {

		}
	} finally {
		threadSignal.countDown();
	}

}

代码解读

一切源于需求,一切源于”业务“场景,这边的业务不是让大家去做业务,而是”idea“。

老习惯,注意下面红色加粗文字,我们就喜欢“ ”,YEAH!

大家知道了一个BlockQueue,OK,这东西的好处在于:

  1. 你可以设一个size=100的Queue,然后把几十万数据往里扔,当扔到100个的时候它会自动帮你阻塞住,然后你可以起一堆的线程去扫这个Queue里的item而且你扫一个(queue.take())一个,queue里实际的item就会自动减少一个,因此一个线程take后你不用担心另一个线程去”重复take”。这样我们的读和handle就可以相分离。
  2. 在多线程扫queue里的item时你要告诉线程,已经到queue的底啦,没东西可取了,你可以停了,因此当所有的handle线程都碰到queue的“底”时,它们就都会自动停止了,因此我说了,基本上可以做到读完文件中的条数,所有的handle线程也正好处理完。
最后:

我们以实际场景出发一般在handle时都是写数据库或者是NOSQL,因此涉及到一个key, value的问题,因此在这边我们往queue里put的是一个Map。

这就是核心设计思路,此处有一个地方需要高度注意:

DUMMY是一个“空”标准,可是你千万不能放一个NULL,因为一旦你放了NULL,在Queue.take, Queue.put时会直接出错,这将打乱整个线程的运行,因此你一定要New一个,如:
Map DUMMY = new HashMap();

看,要这样才行。

绝对不要Map DUMMP=null,那就完蛋了。D...D...D...D.E.A.D!


如何对整个多线程的process过程进行计时

请见 BatchImportExec.java中以下这行:

使用阻塞式队列处理大数据_第2张图片

ImportTask.java中

使用阻塞式队列处理大数据_第3张图片

给出完整例子

业务需求


  1. 我们需要一个封装好的方法,传入一个文件,然后用多线程handle这个文件中的行数。
  2. 线程数,队列size可设
  3. 需要有一个计时的功能,即从处理开始到处理结束,这个过程一共耗时多少(不少人在多线程处理任务上的计时很头疼,在例子中一并解决该问题)
  4. 最后这个处理过程能够支持csv, txt, excel, 数据库...bla,bla,bla等多种格式的文件(由于篇幅有限我们在这边只实现 1)对于txt/csv和excel文件的处理 2)给出工厂方法可以便于大家自己去扩展这个FileParser。
  5. 处理大数据的excel文件 ,大家都知道我们无论是使用POI还是JXL都会遇上当EXCEL的行数超过65,535行时,你只要worksheet一下,整个JVM内存直接“爆掉”的经验,那么怎么去更高效更少内存的处理大数据量的EXCEL文件呢?如一个excel含有50万行数据时。。。你怎么处理?在此例子中一并给出解决方案。

主要框架代码

BatchDTO.java

package batchpoc;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Date;
import java.util.List;
import java.util.Map;

public class BatchDTO implements Serializable {

	private String pkBtTaskId = "";
	private String taskName = "";
	private String actionType = "";
	private String taskDesc = "";
	private String status = "";
	private String commitedBy = "";
	private Date commitedTime = null;
	private String resultLog = "";
	private String batchId = "";
	private boolean headSkip = true;
	private String errorLogPath = "";
	private String logRootPath = "";
	private boolean errorFlag = false;
	private String campId = "";
	private String[] data = null;
	private long totalCount = 0;

	@Override
	public int hashCode() {
		final int prime = 31;
		int result = 1;
		result = prime * result
				+ ((actionType == null) ? 0 : actionType.hashCode());
		result = prime * result + ((batchId == null) ? 0 : batchId.hashCode());
		result = prime * result + ((campId == null) ? 0 : campId.hashCode());
		result = prime * result
				+ ((commitedBy == null) ? 0 : commitedBy.hashCode());
		result = prime * result
				+ ((commitedTime == null) ? 0 : commitedTime.hashCode());
		result = prime * result + Arrays.hashCode(data);
		result = prime * result + (errorFlag ? 1231 : 1237);
		result = prime * result
				+ ((errorLogPath == null) ? 0 : errorLogPath.hashCode());
		result = prime * result + (headSkip ? 1231 : 1237);
		result = prime * result
				+ ((logRootPath == null) ? 0 : logRootPath.hashCode());
		result = prime * result
				+ ((pkBtTaskId == null) ? 0 : pkBtTaskId.hashCode());
		result = prime * result
				+ ((resultLog == null) ? 0 : resultLog.hashCode());
		result = prime * result + ((status == null) ? 0 : status.hashCode());
		result = prime * result
				+ ((taskDesc == null) ? 0 : taskDesc.hashCode());
		result = prime * result
				+ ((taskName == null) ? 0 : taskName.hashCode());
		result = prime * result + (int) (totalCount ^ (totalCount >>> 32));
		return result;
	}

	public String getPkBtTaskId() {
		return pkBtTaskId;
	}

	public void setPkBtTaskId(String pkBtTaskId) {
		this.pkBtTaskId = pkBtTaskId;
	}

	public String getTaskName() {
		return taskName;
	}

	public void setTaskName(String taskName) {
		this.taskName = taskName;
	}

	public String getActionType() {
		return actionType;
	}

	public void setActionType(String actionType) {
		this.actionType = actionType;
	}

	public String getTaskDesc() {
		return taskDesc;
	}

	public void setTaskDesc(String taskDesc) {
		this.taskDesc = taskDesc;
	}

	public String getStatus() {
		return status;
	}

	public void setStatus(String status) {
		this.status = status;
	}

	public String getCommitedBy() {
		return commitedBy;
	}

	public void setCommitedBy(String commitedBy) {
		this.commitedBy = commitedBy;
	}

	public Date getCommitedTime() {
		return commitedTime;
	}

	public void setCommitedTime(Date commitedTime) {
		this.commitedTime = commitedTime;
	}

	public String getResultLog() {
		return resultLog;
	}

	public void setResultLog(String resultLog) {
		this.resultLog = resultLog;
	}

	public String getBatchId() {
		return batchId;
	}

	public void setBatchId(String batchId) {
		this.batchId = batchId;
	}

	public boolean isHeadSkip() {
		return headSkip;
	}

	public void setHeadSkip(boolean headSkip) {
		this.headSkip = headSkip;
	}

	public String getErrorLogPath() {
		return errorLogPath;
	}

	public void setErrorLogPath(String errorLogPath) {
		this.errorLogPath = errorLogPath;
	}

	public String getLogRootPath() {
		return logRootPath;
	}

	public void setLogRootPath(String logRootPath) {
		this.logRootPath = logRootPath;
	}

	public boolean isErrorFlag() {
		return errorFlag;
	}

	public void setErrorFlag(boolean errorFlag) {
		this.errorFlag = errorFlag;
	}

	public String getCampId() {
		return campId;
	}

	public void setCampId(String campId) {
		this.campId = campId;
	}

	public String[] getData() {
		return data;
	}

	public void setData(String[] data) {
		this.data = data;
	}

	public long getTotalCount() {
		return totalCount;
	}

	public void setTotalCount(long totalCount) {
		this.totalCount = totalCount;
	}

	@Override
	public boolean equals(Object obj) {
		if (this == obj) {
			return true;
		}
		if (obj == null) {
			return false;
		}
		if (!(obj instanceof BatchDTO)) {
			return false;
		}
		BatchDTO other = (BatchDTO) obj;
		if (actionType == null) {
			if (other.actionType != null) {
				return false;
			}
		} else if (!actionType.equals(other.actionType)) {
			return false;
		}
		if (batchId == null) {
			if (other.batchId != null) {
				return false;
			}
		} else if (!batchId.equals(other.batchId)) {
			return false;
		}
		if (campId == null) {
			if (other.campId != null) {
				return false;
			}
		} else if (!campId.equals(other.campId)) {
			return false;
		}
		if (commitedBy == null) {
			if (other.commitedBy != null) {
				return false;
			}
		} else if (!commitedBy.equals(other.commitedBy)) {
			return false;
		}
		if (commitedTime == null) {
			if (other.commitedTime != null) {
				return false;
			}
		} else if (!commitedTime.equals(other.commitedTime)) {
			return false;
		}
		if (!Arrays.equals(data, other.data)) {
			return false;
		}
		if (errorFlag != other.errorFlag) {
			return false;
		}
		if (errorLogPath == null) {
			if (other.errorLogPath != null) {
				return false;
			}
		} else if (!errorLogPath.equals(other.errorLogPath)) {
			return false;
		}
		if (headSkip != other.headSkip) {
			return false;
		}
		if (logRootPath == null) {
			if (other.logRootPath != null) {
				return false;
			}
		} else if (!logRootPath.equals(other.logRootPath)) {
			return false;
		}
		if (pkBtTaskId == null) {
			if (other.pkBtTaskId != null) {
				return false;
			}
		} else if (!pkBtTaskId.equals(other.pkBtTaskId)) {
			return false;
		}
		if (resultLog == null) {
			if (other.resultLog != null) {
				return false;
			}
		} else if (!resultLog.equals(other.resultLog)) {
			return false;
		}
		if (status == null) {
			if (other.status != null) {
				return false;
			}
		} else if (!status.equals(other.status)) {
			return false;
		}
		if (taskDesc == null) {
			if (other.taskDesc != null) {
				return false;
			}
		} else if (!taskDesc.equals(other.taskDesc)) {
			return false;
		}
		if (taskName == null) {
			if (other.taskName != null) {
				return false;
			}
		} else if (!taskName.equals(other.taskName)) {
			return false;
		}
		if (totalCount != other.totalCount) {
			return false;
		}
		return true;
	}

}

BatchTask.java

package batchpoc;

import java.util.concurrent.BlockingQueue;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public abstract class BatchTask{
	protected final Logger logger = LoggerFactory.getLogger(this.getClass());
	public final static String TXT_IMP_EXP = "101";
	public final static String EXCEL_IMP_EXP = "102";
	public final static String TASK_RUNNING = "2";
	public final static String TASK_FINISHED = "4";
	public final static String TASK_FAILED = "5";
	protected BatchDTO taskContext = null;

	public BatchTask(BatchDTO taskContext) {
		this.taskContext = taskContext;
	}

	public abstract void doBatch() throws Exception;
}

EnumerationEngineeFactory.java,用于构建处理“读”多种格式文件的FileParser

package batchpoc;

import java.util.Map;
import java.util.concurrent.BlockingQueue;

import util.Constants;

public class EnumerationEngineeFactory {

	public static EnumerationEnginee getInstance(BlockingQueue queue,
			String type, String fileName, String colNames, boolean skipHeader,
			BatchDTO taskContext) {
		EnumerationEnginee task = null;
		if (type.equals(Constants.ENUMERATION_TXT_TASK)) {
			return new TxtEnumerationTask(queue, fileName, colNames,
					skipHeader, taskContext);
		} else if (type.equals(Constants.ENUMERATION_EXCEL_TASK)) {
			return new XLSEnumerationTask(queue, fileName, colNames,
					skipHeader, taskContext);
		}
		return task;
	}
}

EnumerationEnginee.java

package batchpoc;

import java.io.File;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.CountDownLatch;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public abstract class EnumerationEnginee implements Runnable {
	protected String fileName = "";
	protected String colNames = "";
	protected final Logger logger = LoggerFactory.getLogger(this.getClass());
	protected boolean skipHeader = true;
	protected BatchDTO taskContext = null;
	protected static Map DUMMY = new HashMap();
	protected BlockingQueue queue = null;

	public EnumerationEnginee(BlockingQueue queue, String fileName,
			String colNames, boolean skipHeader, BatchDTO taskContext) {
		this.fileName = fileName;
		this.colNames = colNames;
		this.skipHeader = skipHeader;
		this.taskContext = taskContext;
		this.queue = queue;
	}

	public abstract void enumerate(String fileName, String strKeys)
			throws Exception;

	public abstract void run();

}

ImportTask.java

package batchpoc;

import java.util.Iterator;
import java.util.Map;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.CountDownLatch;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class ImportTask implements Runnable {
	private final Logger logger = LoggerFactory.getLogger(getClass());
	private BatchDTO taskContext = null;
	private CountDownLatch threadSignal = null;
	BlockingQueue queue = null;

	public ImportTask(BlockingQueue queue, BatchDTO taskContext,
			CountDownLatch threadSignal) {
		this.taskContext = taskContext;
		this.threadSignal = threadSignal;
		this.queue = queue;
	}

	public void run() {
		boolean done = false;
		try {
			synchronized (this) {
				while (!done) {
					Map data = (Map) queue.take();
					if (data == EnumerationEnginee.DUMMY) {
						//no data
						queue.put(data);
						done = true;
					} else {
						// if (data != null) {
						for (Iterator it = data.keySet().iterator(); it
								.hasNext();) {
							String key = String.valueOf(it.next());
							System.out.print("import:>>>[" + key + "]  :  ["
									+ data.get(key) + "]");
						}
						System.out.println("\n");						
					}
				}
			}
		} catch (Exception e) {
			logger.error("import file into db error:" + e.getMessage(), e);
			try {
				Thread.interrupted();
			} catch (Exception ie) {
			}
			try {
				queue.put(EnumerationEnginee.DUMMY);
				done = true;
			} catch (Exception ex) {

			}
		} finally {
			threadSignal.countDown();
		}

	}
}

MapUtil.java-用于Map中根据key值排序用

package batchpoc;

/*
 * Author: Mk
 * Created By: 2012-08-23
 */
import java.util.Collections;
import java.util.Comparator;
import java.util.LinkedHashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;

public class MapUtil {
	public static > Map sortByValue(
			Map map) {
		List> list = new LinkedList>(
				map.entrySet());
		Collections.sort(list, new Comparator>() {
			public int compare(Map.Entry o1, Map.Entry o2) {
				return (String.valueOf(o1.getKey())).compareTo(String
						.valueOf(o2.getKey()));
			}
		});

		Map result = new LinkedHashMap();
		for (Map.Entry entry : list) {
			result.put(entry.getKey(), entry.getValue());
		}
		return result;
	}
}

TxtEnumerationTask.java-这个就是专门用于读txt、csv等文本文件的FileParser,它在EnumerationEngineeFactory被调用

package batchpoc;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.BlockingQueue;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class TxtEnumerationTask extends EnumerationEnginee {
	private final Logger logger = LoggerFactory.getLogger(this.getClass());

	public TxtEnumerationTask(BlockingQueue queue, String txtFileName,
			String colNames, boolean skipHeader, BatchDTO taskContext) {
		super(queue, txtFileName, colNames, taskContext.isHeadSkip(),
				taskContext);

	}

	@Override
	public void run() {
		try {
			enumerate(super.fileName, super.colNames);
		} catch (Exception e) {
			logger.error("read txtFileName error, parse excel quit because :"
					+ e.getMessage(), e);
			try {
				Thread.interrupted();
			} catch (Exception ee) {
			}
		} finally {
			try {
				queue.put(DUMMY);
			} catch (Exception ex) {
			}
		}

	}

	public void enumerate(String txtFileName, String strKeys) throws Exception {
		FileInputStream is = null;
		StringBuilder sb = new StringBuilder();
		String a_line = "";
		String[] columnNames = null;
		String[] cellValues = null;
		Map dataRow = new HashMap();
		int i = 0;
		try {
			File f = new File(txtFileName);
			if (f.exists()) {
				is = new FileInputStream(new File(txtFileName));
				BufferedReader br = new BufferedReader(new InputStreamReader(
						is, "UTF-8"));
				if (skipHeader) {
					br.readLine();
				}

				while ((a_line = br.readLine()) != null) {
					if (a_line.trim().length() > 0) {
						String[] data = a_line.split(",");
						for (int index = 0; index < data.length; index++) {
							dataRow.put(String.valueOf(index), data[index]);
						}
						dataRow = MapUtil.sortByValue(dataRow);
						queue.put(dataRow);
						dataRow = new HashMap();
						i++;
					}
				}
			}
		} catch (Exception e) {
			throw new Exception("import was interrupted, error happened in "
					+ i + "  row", e);
		} finally {
			try {
				if (is != null) {
					is.close();
					is = null;
				}
			} catch (Exception e) {
			}
		}
	}
}


XLSEnumerationTask.java-这个就是专门用于读excel文件的FileParser,它在EnumerationEngineeFactory被调用并且它支持读超过几十万行的XLS文件

package batchpoc;

import java.io.File;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.BlockingQueue;

import org.apache.poi.openxml4j.opc.OPCPackage;
import org.apache.poi.openxml4j.opc.PackageAccess;

public class XLSEnumerationTask extends EnumerationEnginee {

	public XLSEnumerationTask(BlockingQueue queue, String txtFileName,
			String colNames, boolean skipHeader, BatchDTO taskContext) {
		super(queue, txtFileName, colNames, taskContext.isHeadSkip(),
				taskContext);
	}

	@Override
	public void enumerate(String fileName, String strKeys) throws Exception {
		File xlsxFile = new File(fileName);
		if (xlsxFile.exists()) {
			// The package open is instantaneous, as it should be.
			OPCPackage p = OPCPackage.open(xlsxFile.getPath(),
					PackageAccess.READ);
			Map dataMap = new HashMap();
			XLSXParser xlsxParser = new XLSXParser(p, queue, true);
			xlsxParser.process();
		}
	}

	@Override
	public void run() {
		try {
			enumerate(super.fileName, super.colNames);
		} catch (Exception e) {
			logger.error("read excel file error, parse excel quit because :"
					+ e.getMessage(), e);
			try {
				Thread.interrupted();
			} catch (Exception ee) {
			}
		} finally {
			try {
				// queue.put(DUMMY);
				queue.put(DUMMY);
			} catch (Exception ex) {
			}
		}

	}

}

XLSXParser.java-这个大了,就是用来处理大数据量的XLS文件的

package batchpoc;

import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.concurrent.BlockingQueue;

import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;

import org.apache.poi.openxml4j.exceptions.OpenXML4JException;
import org.apache.poi.openxml4j.opc.OPCPackage;
import org.apache.poi.openxml4j.opc.PackageAccess;
import org.apache.poi.ss.usermodel.BuiltinFormats;
import org.apache.poi.ss.usermodel.DataFormatter;
import org.apache.poi.xssf.eventusermodel.ReadOnlySharedStringsTable;
import org.apache.poi.xssf.eventusermodel.XSSFReader;
import org.apache.poi.xssf.model.StylesTable;
import org.apache.poi.xssf.usermodel.XSSFCellStyle;
import org.apache.poi.xssf.usermodel.XSSFRichTextString;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.xml.sax.Attributes;
import org.xml.sax.ContentHandler;
import org.xml.sax.InputSource;
import org.xml.sax.SAXException;
import org.xml.sax.XMLReader;
import org.xml.sax.helpers.DefaultHandler;

/**

 */
public class XLSXParser {

	private final Logger logger = LoggerFactory.getLogger(getClass());

	/**
	 * The type of the data value is indicated by an attribute on the cell. The
	 * value is usually in a "v" element within the cell.
	 */
	enum xssfDataType {
		BOOL, ERROR, FORMULA, INLINESTR, SSTINDEX, NUMBER,
	}

	int countrows = 0;

	/**
	 * Derived from http://poi.apache.org/spreadsheet/how-to.html#xssf_sax_api
	 * 

* Also see Standard ECMA-376, 1st edition, part 4, pages 1928ff, at * http://www.ecma-international.org/publications/standards/Ecma-376.htm *

* A web-friendly version is http://openiso.org/Ecma/376/Part4 */ class MyXSSFSheetHandler extends DefaultHandler { /** * Table with styles */ private StylesTable stylesTable; private Map dataMap = new HashMap(); /** * Table with unique strings */ private ReadOnlySharedStringsTable sharedStringsTable; /** * Destination for data */ // private final PrintStream output; /** * Number of columns to read starting with leftmost */ // private final int minColumnCount; // Set when V start element is seen private boolean vIsOpen; // Set when cell start element is seen; // used when cell close element is seen. private xssfDataType nextDataType; // Used to format numeric cell values. private short formatIndex; private String formatString; private final DataFormatter formatter; private int thisRow = 0; private int thisColumn = -1; // The last column printed to the output stream private int lastColumnNumber = -1; // Gathers characters as they are seen. private StringBuffer value; /** * Accepts objects needed while parsing. * * @param styles * Table of styles * @param strings * Table of shared strings * @param cols * Minimum number of columns to show * @param target * Sink for output */ public MyXSSFSheetHandler(StylesTable styles, ReadOnlySharedStringsTable strings, Map dataMap) { this.stylesTable = styles; this.sharedStringsTable = strings; // this.minColumnCount = cols; this.value = new StringBuffer(); this.nextDataType = xssfDataType.NUMBER; this.formatter = new DataFormatter(); this.dataMap = dataMap; } /* * (non-Javadoc) * * @see * org.xml.sax.helpers.DefaultHandler#startElement(java.lang.String, * java.lang.String, java.lang.String, org.xml.sax.Attributes) */ public void startElement(String uri, String localName, String name, Attributes attributes) throws SAXException { if ("inlineStr".equals(name) || "v".equals(name)) { vIsOpen = true; // Clear contents cache value.setLength(0); } // c => cell else if ("c".equals(name)) { // Get the cell reference String r = attributes.getValue("r"); int firstDigit = -1; for (int c = 0; c < r.length(); ++c) { if (Character.isDigit(r.charAt(c))) { firstDigit = c; break; } } thisColumn = nameToColumn(r.substring(0, firstDigit)); // Set up defaults. this.nextDataType = xssfDataType.NUMBER; this.formatIndex = -1; this.formatString = null; String cellType = attributes.getValue("t"); String cellStyleStr = attributes.getValue("s"); if ("b".equals(cellType)) nextDataType = xssfDataType.BOOL; else if ("e".equals(cellType)) nextDataType = xssfDataType.ERROR; else if ("inlineStr".equals(cellType)) nextDataType = xssfDataType.INLINESTR; else if ("s".equals(cellType)) nextDataType = xssfDataType.SSTINDEX; else if ("str".equals(cellType)) nextDataType = xssfDataType.FORMULA; else if (cellStyleStr != null) { // It's a number, but almost certainly one // with a special style or format int styleIndex = Integer.parseInt(cellStyleStr); XSSFCellStyle style = stylesTable.getStyleAt(styleIndex); this.formatIndex = style.getDataFormat(); this.formatString = style.getDataFormatString(); if (this.formatString == null) this.formatString = BuiltinFormats .getBuiltinFormat(this.formatIndex); } } } /** * 取值 * * @param str * @return */ public String checkNumber(String str) { str = str.trim(); String str2 = ""; if (str != null && !"".equals(str)) { for (int i = 0; i < str.length(); i++) { if (str.charAt(i) >= 48 && str.charAt(i) <= 57) { str2 += str.charAt(i); } } } return str2.trim(); } /* * (non-Javadoc) * * @see org.xml.sax.helpers.DefaultHandler#endElement(java.lang.String, * java.lang.String, java.lang.String) */ public void endElement(String uri, String localName, String name) throws SAXException { String thisStr = null; // System.out.println("endElement----->" + name); // v => contents of a cell if ("v".equals(name)) { // Process the value contents as required. // Do now, as characters() may be called more than once switch (nextDataType) { case BOOL: char first = value.charAt(0); thisStr = first == '0' ? "FALSE" : "TRUE"; break; case ERROR: thisStr = "\"ERROR:" + value.toString() + '"'; break; case FORMULA: // A formula could result in a string value, // so always add double-quote characters. thisStr = '"' + value.toString() + '"'; break; case INLINESTR: // TODO: have seen an example of this, so it's untested. XSSFRichTextString rtsi = new XSSFRichTextString( value.toString()); if (rtsi != null) { thisStr = rtsi.toString().trim(); thisStr = thisStr.substring(1, thisStr.length() - 1); } break; case SSTINDEX: String sstIndex = value.toString(); try { int idx = Integer.parseInt(sstIndex); XSSFRichTextString rtss = new XSSFRichTextString( sharedStringsTable.getEntryAt(idx)); if (rtss != null) { /* * thisStr = rtss.toString().trim() * .replaceAll("\\s*", ""); */ thisStr = checkNumber(rtss.toString().trim()); /* * thisStr = thisStr .substring(1, thisStr.length() * - 1); */ } } catch (NumberFormatException ex) { logger.error("Failed to parse SST index '" + sstIndex + "': " + ex.toString(), ex); } break; case NUMBER: String n = value.toString(); if (this.formatString != null) thisStr = formatter.formatRawCellContents( Double.parseDouble(n), this.formatIndex, this.formatString); else thisStr = n; break; default: thisStr = "(TODO: Unexpected type: " + nextDataType + ")"; break; } // Output after we've seen the string contents // Emit commas for any fields that were missing on this row if (lastColumnNumber == -1) { lastColumnNumber = 0; } // for (int i = lastColumnNumber; i < thisColumn; ++i) { // System.out.print(" col: " + i + " "); // } // Might be the empty string. // output.print(thisStr); // System.out.println(thisStr); // System.out.println("thisRow...." + thisRow); if (thisRow > 0 && thisStr != null && thisStr.trim().length() > 0) { // logger.info("dataMap.put()"); dataMap.put(String.valueOf(thisColumn), thisStr); } // Update column if (thisColumn > -1) lastColumnNumber = thisColumn; } else if ("row".equals(name)) { try { if (dataMap.keySet().size() > 0) { dataMap = MapUtil.sortByValue(dataMap); if (toQueue) { queue.put(dataMap); } } } catch (Exception e) { logger.error( "put data into queue error: " + e.getMessage(), e); } thisRow++; dataMap = new HashMap(); lastColumnNumber = -1; } } /** * Captures characters only if a suitable element is open. Originally * was just "v"; extended for inlineStr also. */ public void characters(char[] ch, int start, int length) throws SAXException { if (vIsOpen) value.append(ch, start, length); } /** * Converts an Excel column name like "C" to a zero-based index. * * @param name * @return Index corresponding to the specified name */ private int nameToColumn(String name) { int column = -1; for (int i = 0; i < name.length(); ++i) { int c = name.charAt(i); column = (column + 1) * 26 + c - 'A'; } return column; } } // ///////////////////////////////////// private OPCPackage xlsxPackage; private BlockingQueue queue = null; private boolean toQueue = false; // private int minColumns; // private PrintStream output; /** * Creates a new XLSX -> XML converter * * @param pkg * The XLSX package to process * @param output * The PrintStream to output the CSV to * @param minColumns * The minimum number of columns to output, or -1 for no minimum */ public XLSXParser(OPCPackage pkg, BlockingQueue queue, boolean toQueue) { this.xlsxPackage = pkg; this.queue = queue; this.toQueue = toQueue; // this.minColumns = minColumns; } /** * Parses and shows the content of one sheet using the specified styles and * shared-strings tables. * * @param styles * @param strings * @param sheetInputStream */ public void processSheet(StylesTable styles, ReadOnlySharedStringsTable strings, InputStream sheetInputStream) throws IOException, ParserConfigurationException, SAXException { InputSource sheetSource = new InputSource(sheetInputStream); SAXParserFactory saxFactory = SAXParserFactory.newInstance(); SAXParser saxParser = saxFactory.newSAXParser(); XMLReader sheetParser = saxParser.getXMLReader(); Map dataMap = new HashMap(); ContentHandler handler = new MyXSSFSheetHandler(styles, strings, dataMap); sheetParser.setContentHandler(handler); sheetParser.parse(sheetSource); } /** * Initiates the processing of the XLS workbook file to CSV. * * @throws IOException * @throws OpenXML4JException * @throws ParserConfigurationException * @throws SAXException */ public void process() throws IOException, OpenXML4JException, ParserConfigurationException, SAXException { ReadOnlySharedStringsTable strings = new ReadOnlySharedStringsTable( this.xlsxPackage); XSSFReader xssfReader = new XSSFReader(this.xlsxPackage); StylesTable styles = xssfReader.getStylesTable(); XSSFReader.SheetIterator iter = (XSSFReader.SheetIterator) xssfReader .getSheetsData(); int index = 0; while (iter.hasNext()) { InputStream stream = iter.next(); String sheetName = iter.getSheetName(); // System.out.println(sheetName + " [index=" + index + "]:"); processSheet(styles, strings, stream); stream.close(); ++index; } } public static void main(String[] args) throws Exception { /* * if (args.length < 1) { System.err.println("Use:"); * System.err.println(" XLSX2CSV [min columns]"); return; } */ // File xlsxFile = new File(args[0]); File xlsxFile = new File("d:/test.xlsx"); if (!xlsxFile.exists()) { System.err .println("Not found or not a file: " + xlsxFile.getPath()); return; } int minColumns = -1; // if (args.length >= 2) // minColumns = Integer.parseInt(args[1]); minColumns = 2; // The package open is instantaneous, as it should be. OPCPackage p = OPCPackage.open(xlsxFile.getPath(), PackageAccess.READ); XLSXParser xlsxParser = new XLSXParser(p, null, false); xlsxParser.process(); } }


这个用的是 POI3.5以上版本并且需要有下面这几个LIB库辅助支持才能编译和运行通过:

	
		org.apache.poi
		poi
		${poi_version}
	
	
		org.apache.poi
		poi-ooxml-schemas
		${poi_version}
	
	
		org.apache.poi
		poi-scratchpad
		${poi_version}
	
        
	org.apache.poi
	poi-ooxml
	${poi_version}


我在这边使用的是3.8,回头会给出详细的pom.xml文件
它不是按照传统的load内存的文式去读这个xls文件,而是把xls文件当成一个xml然后以SAX的模式去读取这个excel。

关键处理部位

public void endElement(String uri, String localName, String name)方法中如下语句:
if (thisRow > 0 && thisStr != null&& thisStr.trim().length() > 0) {
	// logger.info("dataMap.put()");
	dataMap.put(String.valueOf(thisColumn), thisStr);
					
}


} else if ("row".equals(name)) {
		try {
			if (dataMap.keySet().size() > 0) {
				dataMap = MapUtil.sortByValue(dataMap);
				if (toQueue) {
					queue.put(dataMap);
				}
			}
		} catch (Exception e) {
			logger.error(
					"put data into queue error: " + e.getMessage(), e);
		}

其它辅助类

UUID.java

package batchpoc;

public class UUID {
	protected static int count = 0;

	public static synchronized String getUUID() {
		count++;
		long time = System.currentTimeMillis();

		String timePattern = Long.toHexString(time);
		int leftBit = 14 - timePattern.length();
		if (leftBit > 0) {
			timePattern = "0000000000".substring(0, leftBit) + timePattern;
		}

		String uuid = timePattern
				+ Long.toHexString(Double.doubleToLongBits(Math.random()))
				+ Long.toHexString(Double.doubleToLongBits(Math.random()))
				+ "000000000000000000";

		uuid = uuid.substring(0, 32).toUpperCase();

		return uuid;
	}
}

GuidCreator.java

package batchpoc;

import java.net.*;
import java.util.*;
import java.security.*;

public class GuidCreator {
	private String seedingString = "";
	private String rawGUID = "";
	private boolean bSecure = false;
	private static Random myRand;
	private static SecureRandom mySecureRand;

	private static String s_id;

	public static final int BeforeMD5 = 1;
	public static final int AfterMD5 = 2;
	public static final int FormatString = 3;
	static {
		mySecureRand = new SecureRandom();
		long secureInitializer = mySecureRand.nextLong();
		myRand = new Random(secureInitializer);
		try {
			s_id = InetAddress.getLocalHost().toString();
		} catch (UnknownHostException e) {
			e.printStackTrace();
		}
	}

	public GuidCreator() {
	}

	/*
	 * Constructor with security option. Setting secure true enables each random
	 * number generated to be cryptographically strong. Secure false defaults to
	 * the standard Random function seeded with a single cryptographically
	 * strong random number.
	 */
	public GuidCreator(boolean secure) {
		bSecure = secure;
	}

	/*
	 * Method to generate the random GUID
	 */
	private void getRandomGUID(boolean secure) {
		MessageDigest md5 = null;
		StringBuffer sbValueBeforeMD5 = new StringBuffer();

		try {
			md5 = MessageDigest.getInstance("MD5");
		} catch (NoSuchAlgorithmException e) {
			System.out.println("Error: " + e);
		}

		try {
			long time = System.currentTimeMillis();
			long rand = 0;

			if (secure) {
				rand = mySecureRand.nextLong();
			} else {
				rand = myRand.nextLong();
			}

			// This StringBuffer can be a long as you need; the MD5
			// hash will always return 128 bits. You can change
			// the seed to include anything you want here.
			// You could even stream a file through the MD5 making
			// the odds of guessing it at least as great as that
			// of guessing the contents of the file!
			sbValueBeforeMD5.append(s_id);
			sbValueBeforeMD5.append(":");
			sbValueBeforeMD5.append(Long.toString(time));
			sbValueBeforeMD5.append(":");
			sbValueBeforeMD5.append(Long.toString(rand));

			seedingString = sbValueBeforeMD5.toString();
			md5.update(seedingString.getBytes());

			byte[] array = md5.digest();
			StringBuffer sb = new StringBuffer();
			for (int j = 0; j < array.length; ++j) {
				int b = array[j] & 0xFF;
				if (b < 0x10)
					sb.append('0');
				sb.append(Integer.toHexString(b));
			}

			rawGUID = sb.toString();

		} catch (Exception e) {
			System.out.println("Error:" + e);
		}
	}

	public String createNewGuid(int nFormatType, boolean secure) {
		getRandomGUID(secure);
		String sGuid = "";
		if (BeforeMD5 == nFormatType) {
			sGuid = this.seedingString;
		} else if (AfterMD5 == nFormatType) {
			sGuid = this.rawGUID;
		} else {
			sGuid = this.toString();
		}
		return sGuid;
	}

	public String createNewGuid(int nFormatType) {
		return this.createNewGuid(nFormatType, this.bSecure);
	}

	/*
	 * Convert to the standard format for GUID (Useful for SQL Server
	 * UniqueIdentifiers, etc.) Example: C2FEEEAC-CFCD-11D1-8B05-00600806D9B6
	 */
	public String toString() {
		String raw = rawGUID.toUpperCase();
		StringBuffer sb = new StringBuffer();
		sb.append(raw.substring(0, 8));
		sb.append("-");
		sb.append(raw.substring(8, 12));
		sb.append("-");
		sb.append(raw.substring(12, 16));
		sb.append("-");
		sb.append(raw.substring(16, 20));
		sb.append("-");
		sb.append(raw.substring(20));

		return sb.toString();
	}

	public static void main(String args[]) {
		GuidCreator myGUID = new GuidCreator();
//		System.out.println("Seeding String="
//				+ myGUID.createNewGuid(GuidCreator.BeforeMD5));
//		System.out.println("rawGUID="
//				+ myGUID.createNewGuid(GuidCreator.AfterMD5));
		System.out.println("RandomGUID="
				+ myGUID.createNewGuid(GuidCreator.AfterMD5));
	}
}

GuidByRandom.java

package batchpoc;

import java.text.SimpleDateFormat;

public class GuidByRandom {
	private static int cnt = 0;

	public static synchronized String getGUID() throws Exception {
		StringBuffer code = new StringBuffer();
		try {
			java.util.Date dt = new java.util.Date(System.currentTimeMillis());
			SimpleDateFormat fmt = new SimpleDateFormat("yyyyMMddHHmmssSSS");//format system time 
			String randomCode = fmt.format(dt);
			cnt = (cnt + 1) % 10000; // You are free the set %100 to
			// 1000,100000
			code.append(randomCode).append(cnt);
			return code.toString();
		} catch (Exception e) {
			throw new Exception("createFileName error:" + e.getMessage(), e);
		}
	}

	public static void main(String[] args) throws Exception {
		System.out.println(getGUID());
	}
}

Constants.java

package util;

public class Constants {

	public final static String ENUMERATION_EXCEL_TASK = "excel";
	public final static String ENUMERATION_TXT_TASK = "txt";
}

StringUtil.java

package util;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.Calendar;
import java.util.Date;
import java.sql.Blob;
import java.text.*;
import java.util.regex.Pattern;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class StringUtil {
	protected final static Logger logger = LoggerFactory
			.getLogger(StringUtil.class);

	public static Object unserializeObj(byte[] bytes) {
		ByteArrayInputStream bais = null;
		try {
			// 反序列化
			bais = new ByteArrayInputStream(bytes);
			ObjectInputStream ois = new ObjectInputStream(bais);
			return ois.readObject();
		} catch (Exception e) {
			logger.error("unserializeObj error:" + e.getMessage(), e);
		}
		return null;
	}

	public static byte[] serializeObj(Object obj) {
		ByteArrayOutputStream bout = null;
		ObjectOutputStream out = null;
		byte[] bytes = null;
		try {
			bout = new ByteArrayOutputStream();
			out = new ObjectOutputStream(bout);
			out.writeObject(obj);
			out.flush();
			bytes = bout.toByteArray();
		} catch (Exception e) {
			logger.error("serializeObject error:" + e.getMessage(), e);
		} finally {
			try {
				if (out != null) {
					out.close();
					out = null;
				}
			} catch (Exception e) {
			}
			try {
				if (bout != null) {
					bout.close();
					bout = null;
				}
			} catch (Exception e) {
			}
		}
		return bytes;
	}

	public static String escpaeCharacters(String s) {
		String val = "";
		try {
			if (s == null || s.length() < 1) {
				return s;
			}
			StringBuilder sb = new StringBuilder(s.length() + 16);
			for (int i = 0; i < s.length(); i++) {
				char c = s.charAt(i);
				switch (c) {
				case '\'':
					sb.append("′");// ´");
					break;
				case '′':
					sb.append("′");// ´");
					break;
				case '\"':
					sb.append(""");
					break;
				case '"':
					sb.append(""");
					break;
				case '&':
					sb.append("&");
					break;
				case '#':
					sb.append("#");
					break;
				case '\\':
					sb.append('¥');
					break;

				case '>':
					sb.append('>');
					break;
				case '<':
					sb.append('<');
					break;
				default:
					sb.append(c);
					break;
				}
			}
			val = sb.toString();
			return val;
		} catch (Exception e) {
			logger.error("sanitized characters error: " + e.getMessage(), e);
			return s;
		}
	}

	public static boolean isNotNullOrEmpty(String str) {
		return str != null && str.trim().length() > 0;
	}

	public static boolean isNull(Object... params) {
		if (params == null) {
			return true;
		}

		for (Object obj : params) {
			if (obj == null) {
				return true;
			}
		}
		return false;
	}

	public static String getString(Object val) {
		String rtnVal = "";
		try {
			rtnVal = (String) val;
			rtnVal = rtnVal.trim();
		} catch (Exception e) {
			rtnVal = "";
		}
		return rtnVal;
	}

	public static String nullToStr(Object val) {
		return ((val == null) ? "" : String.valueOf(val).trim());
	}

	public static int getInt(Object val) {
		int rtnVal = -1;
		String rtnValStr = "-1";
		try {
			rtnValStr = (String) val;
			rtnValStr = rtnValStr.trim();
			rtnVal = Integer.parseInt(rtnValStr);
		} catch (Exception e) {
			rtnVal = -1;
		}

		return rtnVal;
	}

	public static String convertDateToStr(Date dt) {
		String dateStr = "";
		DateFormat format = new SimpleDateFormat("yyyy-MM-dd");
		if (dt != null) {
			dateStr = format.format(dt);
		}
		return dateStr;
	}

	public static String convertDateToStr(Date dt, String formatter) {
		String dateStr = "";
		DateFormat format = new SimpleDateFormat(formatter);
		if (dt != null) {
			dateStr = format.format(dt);
		}
		return dateStr;
	}

	public static Date convertStrToDateByFormat(String dateStr) {
		String inputDateStr = "";
		SimpleDateFormat sf = new SimpleDateFormat("yyyy-MM-dd");
		Date date = null;
		try {
			inputDateStr = dateStr;
			if (dateStr == null || dateStr.trim().length() < 1) {
				inputDateStr = "1900-01-01";
			}
			java.util.Date d = sf.parse(inputDateStr.toString().trim());
			date = new Date(d.getTime());
		} catch (Exception e) {
			logger.error(
					"convertStrToDateByFormat(" + dateStr + ") error:"
							+ e.getMessage(), e);
		}
		return date;
	}

	public static Date convertStrToDateByFormat(String dateStr, String formatter) {
		String inputDateStr = "";
		SimpleDateFormat sf = new SimpleDateFormat(formatter);
		Date date = null;
		try {
			inputDateStr = dateStr;
			if (dateStr == null || dateStr.trim().length() < 1) {
				inputDateStr = "1900-01-01 01:01:01";
			}
			java.util.Date d = sf.parse(inputDateStr.toString().trim());
			date = new Date(d.getTime());
		} catch (Exception e) {
			logger.error(
					"convertStrToDateByFormat(" + dateStr + ") error:"
							+ e.getMessage(), e);
		}
		return date;
	}

	public static Object deepcopy(Object src) throws Exception {
		ByteArrayOutputStream byteout = null;
		ObjectOutputStream out = null;
		ByteArrayInputStream bytein = null;
		ObjectInputStream in = null;
		Object dest = null;
		try {
			byteout = new ByteArrayOutputStream();
			out = new ObjectOutputStream(byteout);
			out.writeObject(src);

			bytein = new ByteArrayInputStream(byteout.toByteArray());

			in = new ObjectInputStream(bytein);

			dest = (Object) in.readObject();
		} catch (Exception e) {
			throw new Exception("deep copy object[" + src
					+ "] error cause by: " + e.getMessage(), e);
		} finally {
			try {
				if (in != null) {
					in.close();
					in = null;
				}
			} catch (Exception e) {
			}
			try {
				if (bytein != null) {
					bytein.close();
					bytein = null;
				}
			} catch (Exception e) {
			}
			try {
				if (out != null) {
					out.close();
					out = null;
				}
			} catch (Exception e) {
			}
			try {
				if (byteout != null) {
					byteout.close();
					byteout = null;
				}
			} catch (Exception e) {
			}
		}
		return dest;

	}

	public static Object blobToObject(Blob blob) throws Exception {
		Object obj = null;
		ObjectInputStream in = null;
		try {
			in = new ObjectInputStream(blob.getBinaryStream());
			obj = in.readObject();
			return obj;
		} catch (Exception e) {
			throw new Exception(e);
		} finally {
			try {
				if (in != null) {
					in.close();
					in = null;
				}
			} catch (Exception e) {
			}
		}
	}

	public static long dateSub(String dateStr) throws ParseException {
		SimpleDateFormat sdf = new SimpleDateFormat("yyyy/MM/dd");
		java.util.Date d = sdf.parse(dateStr);
		Calendar calendar = Calendar.getInstance();
		calendar.setTime(new Date());
		long currentTime = calendar.getTimeInMillis();
		calendar.setTime(d);
		long timeEnd = calendar.getTimeInMillis();
		long theDay = (timeEnd - currentTime) / (1000 * 60 * 60 * 24);
		return theDay;
	}

	public static boolean isNumeric(String str) {
		Pattern pattern = Pattern.compile("[0-9]*");
		return pattern.matcher(str).matches();
	}
}

工程使用maven,因此给出pom.xml完整内容


	4.0.0
	webpoc
	webpoc
	0.0.1-SNAPSHOT
	war
	
		UTF-8
		1.8
		9.3.3.v20150827
		1.7.7
		4.2.1.RELEASE
		1.0.2.RELEASE
		2.5
		5.8.0
		3.8
	
	

		
		
			org.apache.poi
			poi
			${poi_version}
		
		
			org.apache.poi
			poi-ooxml-schemas
			${poi_version}
		
		
			org.apache.poi
			poi-scratchpad
			${poi_version}
		
		
			org.apache.poi
			poi-ooxml
			${poi_version}
		
		
		
		
			org.apache.activemq
			activemq-all
			5.8.0
		

		
			org.apache.activemq
			activemq-pool
			${activemq_version}
		

		
			org.apache.xbean
			xbean-spring
			3.16
		
		

		
		
			javax.servlet
			servlet-api
			${javax.servlet-api.version}
			provided
		
		
			javax.servlet.jsp
			jsp-api
			2.1
			provided
		
		
			javax.servlet
			jstl
			1.2
		
		

		
		
			redis.clients
			jedis
			2.5.2
		
		
			org.redisson
			redisson
			1.0.2
		
		
		
			org.slf4j
			jcl-over-slf4j
			${slf4j.version}
		
		
			org.slf4j
			slf4j-log4j12
			${slf4j.version}
		

		
		
			org.springframework.data
			spring-data-redis
			1.5.2.RELEASE
		
		
			org.springframework
			spring-webmvc
			${spring.version}
			
				
					commons-logging
					commons-logging
				
			
		
		
			org.springframework
			spring-tx
			${spring.version}
		
		
			org.springframework
			spring-aop
			${spring.version}
		
		
			org.springframework
			spring-context-support
			${spring.version}
		
		
			org.springframework.data
			spring-data-redis
			1.4.1.RELEASE
		

		
			org.springframework
			spring-orm
			${spring.version}
		


		
			org.springframework
			spring-jms
			${spring.version}
		

		
			org.springframework.session
			spring-session
			${spring.session.version}
		
		
			org.springframework
			spring-core
			${spring.version}
		
		
	
	
		src
		
			
				maven-compiler-plugin
				3.1
				
					1.7
					1.7
				
			
			
				maven-war-plugin
				2.4
				
					WebContent
					false
				
			
		
	


给出实际调用代码-即如何使用这套批处理数据框架

package batchpoc;

import java.util.ArrayList;
import java.util.Date;
import java.util.List;

import util.Constants;

public class TestImpLogfile {

	/**
	 * @param args
	 */
	public static void main(String[] args) {
		//final String fileName = "d:/log_small.csv";
		final String fileName = "d:/test_big.xlsx";
		try {
			GuidCreator myGUID = new GuidCreator();
			BatchDTO taskContext = new BatchDTO();
			String batchId = myGUID.createNewGuid(GuidCreator.AfterMD5);
			taskContext.setPkBtTaskId(batchId);
			taskContext.setTaskName(BatchTask.TXT_IMP_EXP);
			taskContext.setTaskDesc(fileName);
			taskContext.setCommitedBy("unittest");
			taskContext.setStatus(BatchTask.TASK_RUNNING);
			taskContext.setCommitedTime(new Date());
			taskContext.setBatchId(batchId);
			taskContext.setHeadSkip(true);
			//BatchImportExec task = new BatchImportExec(
			//		Constants.ENUMERATION_TXT_TASK, fileName, "", taskContext);
			task.doBatch();
			// if (data != null && data.size() > 0) {
			// for (int i = 0; i < data.size(); i++) {
			// System.out.println("rows: " + i + "=====" + data.get(i));
			// }
			// }
			BatchImportExec task = new BatchImportExec( Constants.ENUMERATION_EXCEL_TASK, fileName, "", taskContext);
                        task.doBatch();
		} catch (Exception e) {
			e.printStackTrace();
		}

	}

}

上面我们处理一个含有50万记录的excel文件



使用阻塞式队列处理大数据_第4张图片

读和handle只用了15秒(内存8GB,2核CPU),我们还只是开了如下的线程数和队列:
使用阻塞式队列处理大数据_第5张图片

来看看读一个20万行记录以逗号“,“分隔的CSV文件 的效率吧。

使用阻塞式队列处理大数据_第6张图片

这个文件的列数会多一些,也就用了20秒左右


使用阻塞式队列处理大数据_第7张图片

经过我实际测试在服务器上,16GB-32GB,4-6核CPU上运行一个导入50万条数据的EXCEL至ORACLE或者是SQL SERVER也只是在5分-8分钟内的事,内存占用不过几十MB,handle线程条数也不过5-10条(等于数据库连接占用数据)。。。。。。在此我想到了07年。。。。。。我的以前有一个上家公司。。。。。。他们的一个批处理无法是读一个含有8000行,3列的txt文件导入至oracle单表,竟然要导2-4小时,有时还会OOM。。。。。。感叹中。

当然,大家可能有更好的现在的框架或者是开源的组件如:spring batch, spring cloud来更高效简单的处理这样的批处理任务,但这篇文章的目的是在于使用尽可能简单的方式让大家可以廉价高效更重要的是通过此篇我们知道了:
  1. 如何处量含有大数据量的excel文件(超过65,535行记录)
  2. BlockQueue的妙用
  3. 如何在线程任务中计算整个过程耗时的方法
笔者拿这东西写过一个按照输入关键字找含有相关内容的文本文件的搜索引擎,搜索速度比windows自带搜索快了许多,是java swing界面的,有兴趣的同鞋也可以自己去做做玩玩。

上述方案可以改进之处留给读者当回家作业吧

  1. 如果要处理的文本文件不是用逗号”,“分隔的,如何做到动态可配置Txt文件Parser时的分隔符?
  2. 如何支持多任务操作,即一个系统中对于多个不同格式的文件甚至数据库同时进行批处理,如:先启动一个100万行的txt文件的导入工作,再启动一个100万行xls文件的导入,再启动对MYSQL中一张含有100万行记录的表导入到oracle的一个表中,这样系统中有3个任务,这3个任务都是10个线程+1000个queue.size的任务,如何知道它们目前的运行情况是pending, finished还是stop or fail,甚至可以人为的去stop, suspend, restart这些批处理任务呢?
由其是第2点,处理好第2点,这个批处理导入导出框架就可以直接复用了。

下次博文将更精彩,欢迎关注。

完整代码

戳我下载

转载于:https://www.cnblogs.com/aiwz/p/6154608.html

你可能感兴趣的:(使用阻塞式队列处理大数据)