Mysql 实战笔记 (六) 实践(5)

十五、MySQL是怎么保证高可用的?

正常情况下,只要主库执行更新生成的所有 binlog,都可以传到备库并被正确地执行,备库就能达到跟主库一致的状态,这就是最终一致性。
Mysql 实战笔记 (六) 实践(5)_第1张图片

主备延迟

主备切换可能是一个主动运维动作,比如软件升级、主库所在机器按计划下线等,也可能是被动操作,比如主库所在机器掉电。与数据同步有关的时间点主要包括以下三个:

  1. 主库 A 执行完成一个事务,写入 binlog,我们把这个时刻记为 T1;
  2. 之后传给备库 B,我们把备库 B 接收完这个 binlog 的时刻记为 T2;
  3. 备库 B 执行完成这个事务,我们把这个时刻记为 T3。

所谓主备延迟,就是同一个事务,在备库执行完成的时间和主库执行完成的时间之间的差值,也就是 T3-T1。
可以在备库上执行show slave status 命令,它的返回结果里面会显示seconds_behind_master,用于表示当前备库延迟了多少秒。seconds_behind_master 的计算方法是这样的:

  1. 每个事务的 binlog 里面都有一个时间字段,用于记录主库上写入的时间;
  2. 备库取出当前正在执行的事务的时间字段的值,计算它与当前系统时间的差值,得到seconds_behind_master。

如果主备库机器的系统时间设置不一致,会不会导致主备延迟的值不准?

不会的。因为,备库连接到主库的时候,会通过执行 SELECT UNIX_TIMESTAMP() 函数来获得当前主库的系统时间。如果这时候发现主库的系统时间与自己不一致,备库在执行seconds_behind_master 计算的时候会自动扣掉这个差值。

需要说明的是,在网络正常的时候,日志从主库传给备库所需的时间是很短的,即 T2-T1的值是非常小的。也就是说,网络正常情况下,主备延迟的主要来源是备库接收完 binlog和执行完这个事务之间的时间差。所以说,主备延迟最直接的表现是,备库消费中转日志(relay log)的速度,比主库生产binlog 的速度要慢。

主备延迟的来源

备库所在机器的性能要比主库所在的机器性能差

备库的压力大

一般的想法是,主库既然提供了写能力,那么备库可以提供一些读能力。或者一些运营后台需要的分析语句,不能影响正常业务,所以只能在备库上跑。
这种情况,我们一般可以这么处理:

  1. 一主多从。除了备库外,可以多接几个从库,让这些从库来分担读的压力。
  2. 通过 binlog 输出到外部系统,比如 Hadoop 这类系统,让外部系统提供统计类查询的能力。

其中,一主多从的方式大都会被采用。因为作为数据库系统,还必须保证有定期全量备份的能力。而从库,就很适合用来做备份。从库和备库在概念上其实差不多。

大事务

因为主库上必须等事务执行完成才会写入 binlog,再传给备库。所以,如果一个主库上的语句执行 10 分钟,那这个事务很可能就会导致从库延迟 10分钟。不要一次性地用 delete 语句删除太多数据。其实,这就是一个典型的大事务场景。

比如,一些归档类的数据,平时没有注意删除历史数据,等到空间快满了,业务开发人员要一次性地删掉大量历史数据。同时,又因为要避免在高峰期操作会影响业务(至少有这个意识还是很不错的),所以会在晚上执行这些大量数据的删除操作。

另一种典型的大事务场景,就是大表 DDL。

备库的并行复制能力

可靠性优先策略

在图 1 的双 M 结构下,从状态 1 到状态 2 切换的详细过程是这样的:

  1. 判断备库 B 现在的 seconds_behind_master,如果小于某个值(比如 5 秒)继续下一步,否则持续重试这一步;
  2. 把主库 A 改成只读状态,即把 readonly 设置为 true;
  3. 判断备库 B 的 seconds_behind_master 的值,直到这个值变成 0 为止;
  4. 把备库 B 改成可读写状态,也就是把 readonly 设置为 false;
  5. 把业务请求切到备库 B。

这个切换流程,一般是由专门的 HA 系统来完成的,我们暂时称之为可靠性优先流程。
Mysql 实战笔记 (六) 实践(5)_第2张图片
备注:图中的 SBM,是 seconds_behind_master 参数的简写。

可以看到,这个切换流程中是有不可用时间的。因为在步骤 2 之后,主库 A 和备库 B 都处于 readonly 状态,也就是说这时系统处于不可写状态,直到步骤 5 完成后才能恢复。在这个不可用状态中,比较耗费时间的是步骤 3,可能需要耗费好几秒的时间。这也是为什么需要在步骤 1 先做判断,确保 seconds_behind_master 的值足够小。
试想如果一开始主备延迟就长达 30 分钟,而不先做判断直接切换的话,系统的不可用时间就会长达 30 分钟,这种情况一般业务都是不可接受的。当然,系统的不可用时间,是由这个数据可靠性优先的策略决定的。你也可以选择可用性优先的策略,来把这个不可用时间几乎降为 0。

可用性优先策略

如果我强行把步骤 4、5 调整到最开始执行,也就是说不等主备数据同步,直接把连接切到备库 B,并且让备库 B 可以读写,那么系统几乎就没有不可用时间了。我们把这个切换流程,暂时称作可用性优先流程。这个切换流程的代价,就是可能出现数据不一致的情况。

insert into t(c) values(4); insert into t(c) values(5);
假设,现在主库上其他的数据表有大量的更新,导致主备延迟达到 5 秒。在插入一条 c=4的语句后,发起了主备切换。
下图是可用性优先策略,且binlog_format=mixed时的切换流程和数据结果。
Mysql 实战笔记 (六) 实践(5)_第3张图片
现在,我们一起分析下这个切换流程:

  1. 步骤 2 中,主库 A 执行完 insert 语句,插入了一行数据(4,4),之后开始进行主备切换。
  2. 步骤 3 中,由于主备之间有 5 秒的延迟,所以备库 B 还没来得及应用“插入 c=4”这个中转日志,就开始接收客户端“插入 c=5”的命令。3. 步骤 4 中,备库 B 插入了一行数据(4,5),并且把这个 binlog 发给主库 A。
  3. 步骤 5 中,备库 B 执行“插入 c=4”这个中转日志,插入了一行数据(5,4)。而直接在备库 B 执行的“插入 c=5”这个语句,传到主库 A,就插入了一行新数据(5,5)。

最后的结果就是,主库 A 和备库 B 上出现了两行不一致的数据。可以看到,这个数据不一致,是由可用性优先流程导致的。

可用性优先策略,但设置 binlog_format=row
因为 row 格式在记录 binlog 的时候,会记录新插入的行的所有字段值,所以最后只会有一行不一致。而且,两边的主备同步的应用线程会报错 duplicate key error 并停止。也就是说,这种情况下,备库 B 的 (5,4) 和主库 A 的 (5,5) 这两行数据,都不会被对方执行。
从上面的分析中,你可以看到一些结论:
Mysql 实战笔记 (六) 实践(5)_第4张图片

  1. 使用 row 格式的 binlog 时,数据不一致的问题更容易被发现。而使用 mixed 或者statement 格式的 binlog 时,数据很可能悄悄地就不一致了。如果你过了很久才发现数据不一致的问题,很可能这时的数据不一致已经不可查,或者连带造成了更多的数据逻辑不一致。
  2. 主备切换的可用性优先策略会导致数据不一致。因此,大多数情况下,我都建议你使用可靠性优先策略。毕竟对数据服务来说的话,数据的可靠性一般还是要优于可用性的。

可用性优先级更高的场景

有一个库的作用是记录操作日志。这时候,如果数据不一致可以通过 binlog 来修补,而这个短暂的不一致也不会引发业务问题。同时,业务系统依赖于这个日志写入逻辑,如果这个库不可写,会导致线上的业务操作无法执行。

这时候,你可能就需要选择先强行切换,事后再补数据的策略。当然,事后复盘的时候,我们想到了一个改进措施就是,让业务逻辑不要依赖于这类日志的写入。也就是说,日志写入这个逻辑模块应该可以降级,比如写到本地文件,或者写到另外一个临时库里面。

按照可靠性优先的思路,异常切换会是什么效果?

假设,主库 A 和备库 B 间的主备延迟是 30 分钟,这时候主库 A 掉电了,HA 系统要切换B 作为主库。我们在主动切换的时候,可以等到主备延迟小于 5 秒的时候再启动切换,但这时候已经别无选择了。
Mysql 实战笔记 (六) 实践(5)_第5张图片
采用可靠性优先策略的话,你就必须得等到备库 B 的 seconds_behind_master=0 之后,才能切换。但现在的情况比刚刚更严重,并不是系统只读、不可写的问题了,而是系统处于完全不可用的状态。因为,主库 A 掉电后,我们的连接还没有切到备库 B。

能不能直接切换到备库 B,但是保持 B 只读呢?这样也不行。因为,这段时间内,中转日志还没有应用完成,如果直接发起主备切换,客户端查询看不到之前执行完成的事务,会认为有“数据丢失”。虽然随着中转日志的继续应用,这些数据会恢复回来,但是对于一些业务来说,查询到“暂时丢失数据的状态”也是不能被接受的。

在满足数据可靠性的前提下,MySQL 高可用系统的可用性,是依赖于主备延迟的。延迟的时间越小,在主库故障的时候,服务恢复需要的时间就越短,可用性就越高。

十六、备库为什么会延迟好几个小时?

Mysql 实战笔记 (六) 实践(5)_第6张图片
谈到主备的并行复制能力,我们要关注的是图中黑色的两个箭头。一个箭头代表了客户端写入主库,另一箭头代表的是备库上 sql_threa 执行中转日志(relay log)。如果用箭头的粗细来代表并行度的话,那么真实情况就如图 1 所示,第一个箭头要明显粗于第二个箭头。

在主库上,影响并发度的原因就是各种锁了。由于 InnoDB 引擎支持行锁,除了所有并发事务都在更新同一行(热点行)这种极端场景外,它对业务并发度的支持还是很友好的。所以,你在性能测试的时候会发现,并发压测线程 32 就比单线程时,总体吞吐量高。

而日志在备库上的执行,就是图中备库上 sql_thread 更新数据 (DATA) 的逻辑。如果是用单线程的话,就会导致备库应用日志不够快,造成主备延迟。

MySQL 多线程复制

Mysql 实战笔记 (六) 实践(5)_第7张图片
coordinator 就是原来的 sql_thread, 不过现在它不再直接更新数据了,只负责读取中转日志和分发事务。真正更新日志的,变成了 worker 线程。而 work 线程的个数,就是由参数 slave_parallel_workers 决定的。根据我的经验,把这个值设置为 8~16 之间最好(32 核物理机的情况),毕竟备库还有可能要提供读查询,不能把 CPU 都吃光了。

事务能不能按照轮询的方式分发给各个 worker,也就是第一个事务分给 worker_1,第二个事务发给 worker_2 呢?
其实是不行的。因为,事务被分发给 worker 以后,不同的 worker 就独立执行了。但是,由于 CPU 的调度策略,很可能第二个事务最终比第一个事务先执行。而如果这时候刚好这两个事务更新的是同一行,也就意味着,同一行上的两个事务,在主库和备库上的执行顺序相反,会导致主备不一致的问题。

同一个事务的多个更新语句,能不能分给不同的worker 来执行呢?
也不行。举个例子,一个事务更新了表 t1 和表 t2 中的各一行,如果这两条更新语句被分到不同 worker 的话,虽然最终的结果是主备一致的,但如果表 t1 执行完成的瞬间,备库上有一个查询,就会看到这个事务“更新了一半的结果”,破坏了事务逻辑的隔离性。

所以,coordinator 在分发的时候,需要满足以下这两个基本要求:

  1. 不能造成更新覆盖。这就要求更新同一行的两个事务,必须被分发到同一个 worker中。
  2. 同一个事务不能被拆开,必须放到同一个 worker 中。

MySQL 5.6 版本的并行复制策略

官方 MySQL5.6 版本,支持了并行复制,只是支持的粒度是按库并行。理解了上面介绍的按表分发策略和按行分发策略,你就理解了,用于决定分发策略的 hash 表里,key 就是数据库名。

这个策略的并行效果,取决于压力模型。如果在主库上有多个 DB,并且各个 DB 的压力均衡,使用这个策略的效果会很好。相比于按表和按行分发,这个策略有两个优势:

  1. 构造 hash 值的时候很快,只需要库名;而且一个实例上 DB 数也不会很多,不会出现需要构造 100 万个项这种情况。
  2. 不要求 binlog 的格式。因为 statement 格式的 binlog 也可以很容易拿到库名。

但是,如果你的主库上的表都放在同一个 DB 里面,这个策略就没有效果了;或者如果不同DB 的热点不同,比如一个是业务逻辑库,一个是系统配置库,那也起不到并行的效果。理论上你可以创建不同的 DB,把相同热度的表均匀分到这些不同的 DB 中,强行使用这个策略。不过据我所知,由于需要特地移动数据,这个策略用得并不多。

MySQL 5.7 的并行复制策略

由参数slave-parallel-type 来控制并行复制策略:

  1. 配置为 DATABASE,表示使用 MySQL 5.6 版本的按库并行策略;
  2. 配置为 LOGICAL_CLOCK,表示的就是类似 MariaDB 的策略。不过,MySQL 5.7 这个策略,针对并行度做了优化。这个优化的思路也很有趣儿。

同时处于“执行状态”的所有事务,是不是可以并行?不能。因为,这里面可能有由于锁冲突而处于锁等待状态的事务。如果这些事务在备库上被分配到不同的 worker,就会出现备库跟主库不一致的情况。
Mysql 实战笔记 (六) 实践(5)_第8张图片
两阶段提交细化过程图。

其实,不用等到 commit 阶段,只要能够到达 redo log prepare 阶段,就表示事务已经通过锁冲突的检验了。因此,MySQL 5.7 并行复制策略的思想是:

  1. 同时处于 prepare 状态的事务,在备库执行时是可以并行的;
  2. 处于 prepare 状态的事务,与处于 commit 状态的事务之间,在备库执行时也是可以并行的。

binlog 的组提交,有两个参数:

  1. binlog_group_commit_sync_delay 参数,表示延迟多少微秒后才调用 fsync;
  2. binlog_group_commit_sync_no_delay_count 参数,表示累积多少次以后才调用fsync。

这两个参数是用于故意拉长 binlog 从 write 到 fsync 的时间,以此减少 binlog 的写盘次数。在 MySQL 5.7 的并行复制策略里,它们可以用来制造更多的“同时处于 prepare 阶段的事务”。这样就增加了备库复制的并行度。也就是说,这两个参数,既可以“故意”让主库提交得慢些,又可以让备库执行得快些。在MySQL 5.7 处理备库延迟的时候,可以考虑调整这两个参数值,来达到提升备库复制并发度的目的。

MySQL 5.7.22 的并行复制策略

MySQL 增加了一个新的并行复制策略,基于 WRITESET 的并行复制。
相应地,新增了一个参数 binlog-transaction-dependency-tracking,用来控制是否启用这个新策略。这个参数的可选值有以下三种。

  1. COMMIT_ORDER,表示的就是前面介绍的,根据同时进入 prepare 和 commit 来判断是否可以并行的策略。
  2. WRITESET,表示的是对于事务涉及更新的每一行,计算出这一行的 hash 值,组成集合writeset。如果两个事务没有操作相同的行,也就是说它们的 writeset 没有交集,就可以并行。
  3. WRITESET_SESSION,是在 WRITESET 的基础上多了一个约束,即在主库上同一个线程先后执行的两个事务,在备库执行的时候,要保证相同的先后顺序。

当然为了唯一标识,这个 hash 值是通过“库名 + 表名 + 索引名 + 值”计算出来的。如果一个表上除了有主键索引外,还有其他唯一索引,那么对于每个唯一索引,insert 语句对应的 writeset 就要多增加一个 hash 值。你可能看出来了,这跟我们前面介绍的基于 MySQL 5.5 版本的按行分发的策略是差不多的。不过,MySQL 官方的这个实现还是有很大的优势:

  1. writeset 是在主库生成后直接写入到 binlog 里面的,这样在备库执行的时候,不需要解析 binlog 内容(event 里的行数据),节省了很多计算量;
  2. 不需要把整个事务的 binlog 都扫一遍才能决定分发到哪个 worker,更省内存;
  3. 由于备库的分发策略不依赖于 binlog 内容,所以 binlog 是 statement 格式也是可以的。

因此,MySQL 5.7.22 的并行复制策略在通用性上还是有保证的。当然,对于“表上没主键”和“外键约束”的场景,WRITESET 策略也是没法并行的,也会暂时退化为单线程模型。

十七、主库出问题了,从库怎么办?

如下图所示,就是一个基本的一主多从结构。
Mysql 实战笔记 (六) 实践(5)_第9张图片
图中,虚线箭头表示的是主备关系,也就是 A 和 A’互为主备, 从库 B、C、D 指向的是主库 A。一主多从的设置,一般用于读写分离,主库负责所有的写入和一部分读,其他的读请求则由从库分担。

如下图所示,就是主库发生故障,主备切换后的结果。
Mysql 实战笔记 (六) 实践(5)_第10张图片
相比于一主一备的切换流程,一主多从结构在切换完成后,A’会成为新的主库,从库 B、C、D 也要改接到 A’。正是由于多了从库 B、C、D 重新指向的这个过程,所以主备切换的复杂性也相应增加了。

基于位点的主备切换

当我们把节点 B 设置成节点 A’的从库的时候,需要执行一条 change master 命令:

CHANGE MASTER TO 
MASTER_HOST=$host_name 
MASTER_PORT=$por
MASTER_USER=$user_name 
MASTER_PASSWORD=$password 
MASTER_LOG_FILE=$master_log_name 
MASTER_LOG_POS=$master_log_po

MASTER_HOST、MASTER_PORT、MASTER_USER 和 MASTER_PASSWORD 四个参数,分别代表了主库 A’的 IP、端口、用户名和密码。最后两个参数 MASTER_LOG_FILE 和 MASTER_LOG_POS 表示,要从主库的master_log_name 文件的 master_log_pos 这个位置的日志继续同步。而这个位置就是我们所说的同步位点,也就是主库对应的文件名和日志偏移量。

节点 B 要设置成 A’的从库,就要执行 change master 命令,就不可避免地要设置位点的这两个参数,但是这两个参数到底应该怎么设置呢?

原来节点 B 是 A 的从库,本地记录的也是 A 的位点。但是相同的日志,A 的位点和 A’的位点是不同的。因此,从库 B 要切换的时候,就需要先经过“找同步位点”这个逻辑。这个位点很难精确取到,只能取一个大概位置。为什么这么说呢?考虑到切换过程中不能丢数据,所以我们找位点的时候,总是要找一个“稍微往前”的,然后再通过判断跳过那些在从库 B 上已经执行过的事务。一种取同步位点的方法是这样的:

  1. 等待新主库 A’把中转日志(relay log)全部同步完成;
  2. 在 A’上执行 show master status 命令,得到当前 A’上最新的 File 和 Position;
  3. 取原主库 A 故障的时刻 T;
  4. 用 mysqlbinlog 工具解析 A’的 File,得到 T 时刻的位点。

mysqlbinlog File --stop-datetime=T --start-datetime=T

图中,end_log_pos 后面的值“123”,表示的就是 A’这个实例,在 T 时刻写入新的binlog 的位置。然后,我们就可以把 123 这个值作为 $master_log_pos ,用在节点 B 的change master 命令里。

当然这个值并不精确。为什么呢?你可以设想有这么一种情况,假设在 T 这个时刻,主库 A 已经执行完成了一个 insert 语句插入了一行数据 R,并且已经将 binlog 传给了 A’和 B,然后在传完的瞬间主库 A 的主机就掉电了。那么,这时候系统的状态是这样的:

  1. 在从库 B 上,由于同步了 binlog, R 这一行已经存在;
  2. 在新主库 A’上, R 这一行也已经存在,日志是写在 123 这个位置之后的;
  3. 我们在从库 B 上执行 change master 命令,指向 A’的 File 文件的 123 位置,就会把插入 R 这一行数据的 binlog 又同步到从库 B 去执行。

这时候,从库 B 的同步线程就会报告 Duplicate entry ‘id_of_R’ for key ‘PRIMARY’错误,提示出现了主键冲突,然后停止同步。所以,通常情况下,我们在切换任务的时候,要先主动跳过这些错误,有两种常用的方法。
一种做法是,主动跳过一个事务。跳过命令的写法是:
set global sql_slave_skip_counter=1; start slave;
因为切换过程中,可能会不止重复执行一个事务,所以我们需要在从库 B 刚开始接到新主库 A’时,持续观察,每次碰到这些错误就停下来,执行一次跳过命令,直到不再出现停下来的情况,以此来跳过可能涉及的所有事务。

另外一种方式是,通过设置 slave_skip_errors 参数,直接设置跳过指定的错误。在执行主备切换时,有这么两类错误,是经常会遇到的:1062 错误是插入数据时唯一键冲突;1032 错误是删除数据时找不到行。

因此,我们可以把 slave_skip_errors 设置为 “1032,1062”,这样中间碰到这两个错误时就直接跳过。这里需要注意的是,这种直接跳过指定错误的方法,针对的是主备切换时,由于找不到精确的同步位点,所以只能采用这种方法来创建从库和新主库的主备关系。这个背景是,我们很清楚在主备切换过程中,直接跳过 1032 和 1062 这两类错误是无损的,所以才可以这么设置 slave_skip_errors 参数。等到主备间的同步关系建立完成,并稳定执行一段时间之后,我们还需要把这个参数设置为空,以免之后真的出现了主从数据不一致,也跳过了。

GTID

通过 sql_slave_skip_counter 跳过事务和通过 slave_skip_errors 忽略错误的方法,虽然都最终可以建立从库 B 和新主库 A’的主备关系,但这两种操作都很复杂,而且容易出错。所以,MySQL 5.6 版本引入了 GTID,彻底解决了这个困难。

GTID 的全称是 Global Transaction Identifier,也就是全局事务 ID,是一个事务在提交的时候生成的,是这个事务的唯一标识。它由两部分组成,格式是:GTID=server_uuid:gno
server_uuid 是一个实例第一次启动时自动生成的,是一个全局唯一的值;gno 是一个整数,初始值是 1,每次提交事务的时候分配给这个事务,并加 1。

在 MySQL 的官方文档里,GTID 格式是这么定义的:
GTID=source_id:transaction_id
这里的 source_id 就是 server_uuid;而后面的这个 transaction_id,我觉得容易造成误导,所以我改成了 gno。为什么说使用 transaction_id 容易造成误解呢?因为,在 MySQL 里面我们说 transaction_id 就是指事务 id,事务 id 是在事务执行过程中分配的,如果这个事务回滚了,事务 id 也会递增,而 gno 是在事务提交的时候才会分配。从效果上看,GTID 往往是连续的,因此我们用 gno 来表示更容易理解。

TID 模式的启动也很简单,我们只需要在启动一个 MySQL 实例的时候,加上参数gtid_mode=on 和 enforce_gtid_consistency=on 就可以了。在 GTID 模式下,每个事务都会跟一个 GTID 一一对应。这个 GTID 有两种生成方式,而使用哪种方式取决于 session 变量 gtid_next 的值。

  1. 如果 gtid_next=automatic,代表使用默认值。这时,MySQL 就会把server_uuid:gno 分配给这个事务。a. 记录 binlog 的时候,先记录一行 SET@@SESSION.GTID_NEXT=‘server_uuid:gno’;b. 把这个 GTID 加入本实例的 GTID 集合。1GTID=server_uuid:gno复制代码server_uuid 是一个实例第一次启动时自动生成的,是一个全局唯一的值;gno 是一个整数,初始值是 1,每次提交事务的时候分配给这个事务,并加 1。1GTID=source_id:transaction_id复制代码
  2. 如果 gtid_next 是一个指定的 GTID 的值,比如通过 set gtid_next='current_gtid’指定为 current_gtid,那么就有两种可能:a. 如果 current_gtid 已经存在于实例的 GTID 集合中,接下来执行的这个事务会直接被系统忽略;b. 如果 current_gtid 没有存在于实例的 GTID 集合中,就将这个 current_gtid 分配给接下来要执行的事务,也就是说系统不需要给这个事务生成新的 GTID,因此 gno 也不用加 1。

注意,一个 current_gtid 只能给一个事务使用。这个事务提交后,如果要执行下一个事务,就要执行 set 命令,把 gtid_next 设置成另外一个 gtid 或者 automatic。这样,每个 MySQL 实例都维护了一个 GTID 集合,用来对应“这个实例执行过的所有事务”。

接下来我就用一个简单的例子,来和你说明 GTID 的基本用法。我们在实例 X 中创建一个表 t。

CREATE TABLE `t` (  
    `id` int(11) NOT NULL,  
    `c` int(11) DEFAULT NULL,  
    PRIMARY KEY (`id`)
    ) ENGINE=InnoDB;
insert into t values(1,1);

Mysql 实战笔记 (六) 实践(5)_第11张图片
可以看到,事务的 BEGIN 之前有一条 SET @@SESSION.GTID_NEXT 命令。这时,如果实例 X 有从库,那么将 CREATE TABLE 和 insert 语句的 binlog 同步过去执行的话,执行事务之前就会先执行这两个 SET 命令, 这样被加入从库的 GTID 集合的,就是图中的这两个 GTID。假设,现在这个实例 X 是另外一个实例 Y 的从库,并且此时在实例 Y 上执行了下面这条插入语句:
insert into t values(1,1);

并且,这条语句在实例 Y 上的 GTID 是 “aaaaaaaa-cccc-dddd-eeee-ffffffffffff:10”。那么,实例 X 作为 Y 的从库,就要同步这个事务过来执行,显然会出现主键冲突,导致实例 X 的同步线程停止。这时,我们应该怎么处理呢?处理方法就是,你可以执行下面的这个语句序列:

set gtid_next='aaaaaaaa-cccc-dddd-eeee-ffffffffffff:10';
begin;
commit;
set gtid_next=automatic;
start slave;

其中,前三条语句的作用,是通过提交一个空事务,把这个 GTID 加到实例 X 的 GTID 集合中。如图 5 所示,就是执行完这个空事务之后的 show master status 的结果。
Mysql 实战笔记 (六) 实践(5)_第12张图片
可以看到实例 X 的 Executed_Gtid_set 里面,已经加入了这个 GTID。

这样,我再执行 start slave 命令让同步线程执行起来的时候,虽然实例 X 上还是会继续执行实例 Y 传过来的事务,但是由于“aaaaaaaa-cccc-dddd-eeee-ffffffffffff:10”已经存在于实例 X 的 GTID 集合中了,所以实例 X 就会直接跳过这个事务,也就不会再出现主键冲突的错误。在上面的这个语句序列中,start slave 命令之前还有一句 set gtid_next=automatic。这句话的作用是“恢复 GTID 的默认分配行为”,也就是说如果之后有新的事务再执行,就还是按照原来的分配方式,继续分配 gno=3。

基于 GTID 的主备切换

在 GTID 模式下,备库 B 要设置为新主库 A’的从库的语法如下:

CHANGE MASTER TO 
MASTER_HOST=$host_name 
MASTER_PORT=$port 
MASTER_USER=$user_name 
MASTER_PASSWORD=$password 
master_auto_position=1

其中,master_auto_position=1 就表示这个主备关系使用的是 GTID 协议。可以看到,前面让我们头疼不已的 MASTER_LOG_FILE 和 MASTER_LOG_POS 参数,已经不需要指定了。我们把现在这个时刻,实例 A’的 GTID 集合记为 set_a,实例 B 的 GTID 集合记为set_b。接下来,我们就看看现在的主备切换逻辑。

我们在实例 B 上执行 start slave 命令,取 binlog 的逻辑是这样的:

  1. 实例 B 指定主库 A’,基于主备协议建立连接。
  2. 实例 B 把 set_b 发给主库 A’。
  3. 实例 A’算出 set_a 与 set_b 的差集,也就是所有存在于 set_a,但是不存在于 set_b的 GTID 的集合,判断 A’本地是否包含了这个差集需要的所有 binlog 事务。a. 如果不包含,表示 A’已经把实例 B 需要的 binlog 给删掉了,直接返回错误;b. 如果确认全部包含,A’从自己的 binlog 文件里面,找出第一个不在 set_b 的事务,发给 B;
  4. 之后就从这个事务开始,往后读文件,按顺序取 binlog 发给 B 去执行。

其实,这个逻辑里面包含了一个设计思想:在基于 GTID 的主备关系里,系统认为只要建立主备关系,就必须保证主库发给备库的日志是完整的。因此,如果实例 B 需要的日志已经不存在,A’就拒绝把日志发给 B。

这跟基于位点的主备协议不同。基于位点的协议,是由备库决定的,备库指定哪个位点,主库就发哪个位点,不做日志的完整性判断。基于上面的介绍,我们再来看看引入 GTID 后,一主多从的切换场景下,主备切换是如何实现的。由于不需要找位点了,所以从库 B、C、D 只需要分别执行 change master 命令指向实例A’即可。

其实,严谨地说,主备切换不是不需要找位点了,而是找位点这个工作,在实例 A’内部就已经自动完成了。但由于这个工作是自动的,所以对 HA 系统的开发人员来说,非常友好。
之后这个系统就由新主库 A’写入,主库 A’的自己生成的 binlog 中的 GTID 集合格式是:server_uuid_of_A’:1-M。如果之前从库 B 的 GTID 集合格式是 server_uuid_of_A:1-N, 那么切换之后 GTID 集合的格式就变成了 server_uuid_of_A:1-N, server_uuid_of_A’:1-M。当然,主库 A’之前也是 A 的备库,因此主库 A’和从库 B 的 GTID 集合是一样的。这就达到了我们预期。

GTID 和在线 DDL

业务高峰期的慢查询性能问题时,分析到如果是由于索引缺失引起的性能问题,我们可以通过在线加索引来解决。但是,考虑到要避免新增索引对主库性能造成的影响,我们可以先在备库加索引,然后再切换。

在双 M 结构下,备库执行的 DDL 语句也会传给主库,为了避免传回后对主库造成影响,要通过 set sql_log_bin=off 关掉 binlog。
一个问题:这样操作的话,数据库里面是加了索引,但是 binlog 并没有记录下这一个更新,是不是会导致数据和日志不一致?

假设,这两个互为主备关系的库还是实例 X 和实例 Y,且当前主库是 X,并且都打开了GTID 模式。这时的主备切换流程可以变成下面这样:在实例 X 上执行 stop slave。
在实例 Y 上执行 DDL 语句。
执行完成后,查出这个 DDL 语句对应的 GTID,并记为 server_uuid_of_Y:gno。到实例 X 上执行以下语句序列:

set GTID_NEXT="server_uuid_of_Y:gno";
begin;
commit;
set gtid_next=automatic;
start slave;

这样做的目的在于,既可以让实例 Y 的更新有 binlog 记录,同时也可以确保不会在实例 X上执行这条更新。接下来,执行完主备切换,然后照着上述流程再执行一遍即可。

你可能感兴趣的:(mysql)