基于Pytorch实现的MASR中文语音识别

原文博客:Doi技术团队
链接地址:https://blog.doiduoyi.com/authors/1584446358138
初心:记录优秀的Doi技术团队学习经历
本文链接:基于Pytorch实现的MASR中文语音识别

MASR是一个基于端到端的深度神经网络中文普通话语音识别项目,本项目是基于https://github.com/nobody132/masr 进行开发的。

本教程源码地址:https://github.com/yeyupiaoling/MASR.git

模型原理

MASR使用的是门控卷积神经网络(Gated Convolutional Network),网络结构类似于Facebook在2016年提出的Wav2letter,只使用卷积神经网络(CNN)实现的语音识别。但是使用的激活函数不是ReLU或者是HardTanh,而是GLU(门控线性单元)。因此称作门控卷积网络。根据我的实验,使用GLU的收敛速度比HardTanh要快。

  • 以下用字错误率CER来衡量模型的表现,CER = 编辑距离 / 句子长度,越低越好,大致可以理解为 1 - CER 就是识别准确率。

安装环境

  1. 执行requirements.txt安装依赖环境,在安装过程中出现Pyaudio安装错误,可以先执行sudo apt-get install portaudio19-dev这个安装,再重新执行。
pip install -r requirements.txt
  1. 安装ctcdecode依赖,该库笔者只在Ubuntu执行成功过,Windows无法编译。
git clone --recursive https://github.com/parlance/ctcdecode.git
cd ctcdecode/third_party

由于网络问题,在安装过程中可能无法正常下载以下这两个文件,你需要自行下载这两个文件,并把它们解压到third_party目录下。

https://sites.google.com/site/openfst/home/openfst-down/openfst-1.6.7.tar.gz
https://dl.bintray.com/boostorg/release/1.67.0/source/boost_1_67_0.tar.gz

然后回到该源码的根目录,编辑ctcdecode/build.py,注释以下4行代码。

# Download/Extract openfst, boost
download_extract('https://sites.google.com/site/openfst/home/openfst-down/openfst-1.6.7.tar.gz',
                 'third_party/openfst-1.6.7.tar.gz')
download_extract('https://dl.bintray.com/boostorg/release/1.67.0/source/boost_1_67_0.tar.gz',
                 'third_party/boost_1_67_0.tar.gz')

在ctcdecode根目录下执行以下命令开始安装ctcdecode。

pip install .
  1. 安装warp-CTC,如果安装过程中出现c10/cuda/CUDAGuard.h: 没有那个文件或目录错误,将pytorch_binding/src/binding.cpp#include 修改成#include "ATen/cuda/CUDAGuard.h"
git clone https://github.com/SeanNaren/warp-ctc.git
cd warp-ctc
mkdir build
cd build
cmake ..
make
cd ../pytorch_binding
python setup.py install

准备语言模型和数据集

语言模型

下载语言模型并放在lm目录下,以下是下载的是70G的超大语言模型,如果不想使用这么大的,可以下载Mandarin LM Small ,这个模型会小很多。

git clone https://github.com/yeyupiaoling/MASR.git
cd MASR/
mkdir lm
wget https://deepspeech.bj.bcebos.com/zh_lm/zhidao_giga.klm

语音数据集

  1. data目录下是公开数据集的下载和制作训练数据列表和字典的,本项目提供了下载公开的中文普通话语音数据集,分别是Aishell,Free ST-Chinese-Mandarin-Corpus,THCHS-30 这三个数据集,总大小超过28G。下载这三个数据只需要执行一下代码即可,当然如何想快速训练,也可以只下载其中一个。
cd data/
python aishell.py
python free_st_chinese_mandarin_corpus.py
python thchs_30.py

如果开发者有自己的数据集,可以使用自己的数据集进行训练,当然也可以跟上面下载的数据集一起训练。自定义的语音数据需要符合一下格式:

  1. 语音文件需要放在dataset/audio/目录下,例如我们有个wav的文件夹,里面都是语音文件,我们就把这个文件存放在dataset/audio/
  2. 然后把数据列表文件存在dataset/annotation/目录下,程序会遍历这个文件下的所有数据列表文件。例如这个文件下存放一个my_audio.txt,它的内容格式如下。每一行数据包含该语音文件的相对路径和该语音文件对应的中文文本,要注意的是该中文文本只能包含纯中文,不能包含标点符号、阿拉伯数字以及英文字母。
dataset/audio/wav/0175/H0175A0171.wav 我需要把空调温度调到二十度
dataset/audio/wav/0175/H0175A0377.wav 出彩中国人
dataset/audio/wav/0175/H0175A0470.wav 据克而瑞研究中心监测
dataset/audio/wav/0175/H0175A0180.wav 把温度加大到十八
  1. 生成训练的数据列表和数据字典。
python create_manifest.py
python build_vocab.py

训练模型

执行train.py代码开始训练。

python train.py
  • train_manifest_path为训练数据列表路径。
  • dev_manifest_path每一轮评估的数据列表路径。
  • vocab_path数据字典路径。
  • save_model_path保存模型的路径。
  • epochs训练轮数。
  • batch_sizebatch size大小,最好使用默认的。

训练输出结果如下:

-----------  Configuration Arguments -----------
batch_size: 32
dev_manifest_path: dataset/manifest.dev
epochs: 1000
save_model_path: save_model/
train_manifest_path: dataset/manifest.train
vocab_path: dataset/zh_vocab.json
------------------------------------------------
[1/1000][0/415]	Loss = 3498.923828125
[1/1000][1/415]	Loss = 3244.679443359375
[1/1000][2/415]	Loss = 2989.6904296875
[1/1000][3/415]	Loss = 875.3290405273438
[1/1000][4/415]	Loss = 411.30633544921875

预测

本项目提供了三种预测方式,分别是通过音频路径识别infer_path.py,实时录音识别infer_record.py和提供HTTP接口识别infer_server.py,他们的公共参数model_path训练保存的模型路径,lm_path为语言模型路径,根据你的电脑性能,使用超大语言模型还是小的语言模型。

  • infer_path.py的参数wav_path为语音识别的的音频路径。
  • infer_record.py的参数record_time为录音时间。
  • infer_server.py的参数host为服务的访问地址,当为localhost时,本地访问页面,可以在浏览器chrome上在线录音,其他的地址可以使用选择音频文件上传获取预测结果。

参考资料

  1. https://github.com/nobody132/masr

你可能感兴趣的:(深度学习)