model.py
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
import torch.nn.functional as F
import math
class VGG(nn.Module):
def __init__(self):
super(VGG,self).__init__()
# the vgg's layers
#self.features = features
cfg = [64,64,'M',128,128,'M',256,256,256,'M',512,512,512,'M',512,512,512,'M']
layers= []
batch_norm = False
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2,stride = 2)]
else:
conv2d = nn.Conv2d(in_channels,v,kernel_size=3,padding = 1)
if batch_norm:
layers += [conv2d,nn.Batchnorm2d(v),nn.ReLU(inplace=True)]
else:
layers += [conv2d,nn.ReLU(inplace=True)]
in_channels = v
# use the vgg layers to get the feature
self.features = nn.Sequential(*layers)
# 全局池化
self.avgpool = nn.AdaptiveAvgPool2d((7,7))
# 决策层:分类层
self.classifier = nn.Sequential(
nn.Linear(512*7*7,4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096,4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096,1000),
)
for m in self.modules():
if isinstance(m,nn.Conv2d):
nn.init.kaiming_normal_(m.weight,mode='fan_out',nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias,0)
elif isinstance(m,nn.BatchNorm2d):
nn.init.constant_(m.weight,1)
nn.init.constant_(m.bias,1)
elif isinstance(m,nn.Linear):
nn.init.normal_(m.weight,0,0.01)
nn.init.constant_(m.bias,0)
def forward(self,x):
x = self.features(x)
x_fea = x
x = self.avgpool(x)
x_avg = x
x = x.view(x.size(0),-1)
x = self.classifier(x)
return x,x_fea,x_avg
def extractor(self,x):
x = self.features(x)
return x
class YOLOV1(nn.Module):
def __init__(self):
super(YOLOV1,self).__init__()
vgg = VGG()
self.extractor = vgg.extractor
self.avgpool = nn.AdaptiveAvgPool2d((7,7))
# 决策层:检测层
self.detector = nn.Sequential(
nn.Linear(512*7*7,4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096,1470),
)
for m in self.modules():
if isinstance(m,nn.Conv2d):
nn.init.kaiming_normal_(m.weight,mode='fan_out',nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias,0)
elif isinstance(m,nn.BatchNorm2d):
nn.init.constant_(m.weight,1)
nn.init.constant_(m.bias,1)
elif isinstance(m,nn.Linear):
nn.init.normal_(m.weight,0,0.01)
nn.init.constant_(m.bias,0)
def forward(self,x):
x = self.extractor(x)
import pdb
pdb.set_trace()
x = self.avgpool(x)
x = x.view(x.size(0),-1)
x = self.detector(x)
b,_ = x.shape
x = x.view(b,7,7,30)
return x
if __name__ == '__main__':
vgg = VGG()
x = torch.randn(1,3,512,512)
feature,x_fea,x_avg = vgg(x)
print(feature.shape)
print(x_fea.shape)
print(x_avg.shape)
yolov1 = YOLOV1()
feature = yolov1(x)
# feature_size b*7*7*30
print(feature.shape)
model_yolov1_xiangxi.py
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
import torch.nn.functional as F
import math
import cv2
class VGG(nn.Module):
def __init__(self):
super(VGG,self).__init__()
# the vgg's layers
#self.features = features
cfg = [64,64,'M',128,128,'M',256,256,256,'M',512,512,512,'M',512,512,512,'M']
# use the vgg layers to get the feature
#import pdb
#pdb.set_trace()
self.conv2d_1 = nn.Conv2d(3,64,3,1)
self.bn_1 = nn.BatchNorm2d(64)
self.relu_1 = nn.ReLU(True)
self.conv2d_2 = nn.Conv2d(64,64,3,1)
self.bn_2 = nn.BatchNorm2d(64)
self.relu_2 = nn.ReLU(True)
self.pool_2 = nn.MaxPool2d(2,2)
self.conv2d_3 = nn.Conv2d(64,128,3,1)
self.bn_3 = nn.BatchNorm2d(128)
self.relu_3 = nn.ReLU(True)
self.conv2d_4 = nn.Conv2d(128,128,3,1)
self.bn_4 = nn.BatchNorm2d(128)
self.relu_4 = nn.ReLU(True)
self.pool_4 = nn.MaxPool2d(2,2)
self.conv2d_5 = nn.Conv2d(128,256,3,1)
self.bn_5 = nn.BatchNorm2d(256)
self.relu_5 = nn.ReLU(True)
self.conv2d_6 = nn.Conv2d(256,256,3,1)
self.bn_6 = nn.BatchNorm2d(256)
self.relu_6 = nn.ReLU(True)
self.conv2d_7 = nn.Conv2d(256,256,3,1)
self.bn_7 = nn.BatchNorm2d(256)
self.relu_7 = nn.ReLU(True)
self.pool_7 = nn.MaxPool2d(2,2)
self.conv2d_8 = nn.Conv2d(256,512,3,1)
self.bn_8 = nn.BatchNorm2d(512)
self.relu_8 = nn.ReLU(True)
self.conv2d_9 = nn.Conv2d(512,512,3,1)
self.bn_9 = nn.BatchNorm2d(512)
self.relu_9 = nn.ReLU(True)
self.conv2d_10 = nn.Conv2d(512,512,3,1)
self.bn_10 = nn.BatchNorm2d(512)
self.relu_10 = nn.ReLU(True)
self.pool_10 = nn.MaxPool2d(2,2)
self.conv2d_11 = nn.Conv2d(512,512,3,1)
self.bn_11 = nn.BatchNorm2d(512)
self.relu_11 = nn.ReLU(True)
self.conv2d_12 = nn.Conv2d(512,512,3,1)
self.bn_12 = nn.BatchNorm2d(512)
self.relu_12 = nn.ReLU(True)
self.conv2d_13 = nn.Conv2d(512,512,3,1)
self.bn_13 = nn.BatchNorm2d(512)
self.relu_13 = nn.ReLU(True)
self.pool_13 = nn.MaxPool2d(2,2)
# 全局池化
self.avgpool = nn.AdaptiveAvgPool2d((7,7))
# 决策层:分类层
self.classifier = nn.Sequential(
nn.Linear(512*7*7,4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096,4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096,1000),
)
for m in self.modules():
if isinstance(m,nn.Conv2d):
nn.init.kaiming_normal_(m.weight,mode='fan_out',nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias,0)
elif isinstance(m,nn.BatchNorm2d):
nn.init.constant_(m.weight,1)
nn.init.constant_(m.bias,1)
elif isinstance(m,nn.Linear):
nn.init.normal_(m.weight,0,0.01)
nn.init.constant_(m.bias,0)
def forward(self,x):
x_records=[]
#x = self.features(x)
x = self.conv2d_1(x)
x_records.append(x)
x = self.bn_1(x)
x = self.relu_1(x)
x_records.append(x)
x = self.conv2d_2(x)
x = self.bn_2(x)
x = self.relu_2(x)
x_records.append(x)
x = self.pool_2(x)
x = self.conv2d_3(x)
x = self.bn_3(x)
x = self.relu_3(x)
x_records.append(x)
x = self.conv2d_4(x)
x = self.bn_4(x)
x = self.relu_4(x)
x_records.append(x)
x = self.pool_4(x)
x = self.conv2d_5(x)
x = self.bn_5(x)
x = self.relu_5(x)
x_records.append(x)
x = self.conv2d_6(x)
x = self.bn_6(x)
x = self.relu_6(x)
x_records.append(x)
x = self.conv2d_7(x)
x = self.bn_7(x)
x = self.relu_7(x)
x_records.append(x)
x = self.pool_7(x)
x = self.conv2d_8(x)
x = self.bn_8(x)
x = self.relu_8(x)
x_records.append(x)
x = self.conv2d_9(x)
x = self.bn_9(x)
x = self.relu_9(x)
x_records.append(x)
x = self.conv2d_10(x)
x = self.bn_10(x)
x = self.relu_10(x)
x = self.pool_10(x)
x = self.conv2d_11(x)
x = self.bn_11(x)
x = self.relu_11(x)
x = self.conv2d_12(x)
x = self.bn_12(x)
x = self.relu_12(x)
x = self.conv2d_13(x)
x = self.bn_13(x)
x = self.relu_13(x)
x = self.pool_13(x)
x_records.append(x)
x = self.avgpool(x)
x_records.append(x)
x = x.view(x.size(0),-1)
x = self.classifier(x)
return x,x_records
if __name__ == '__main__':
vgg = VGG()
x = torch.randn(1,3,512,512)
#img=torch.tensor(cv2.imread("../../model_test.png"))
img=torch.tensor(cv2.imread("../../model_test2.png"))
w,h,c = img.shape
x = img.view(1,w,h,c).permute(0,3,1,2).contiguous()
x = x/255.
import pdb
pdb.set_trace()
feature,x_records = vgg(x)
print(feature.shape)
from show_featuremap import show_featuremap
for fea in x_records:
print(fea.shape)
show_featuremap(fea.detach())
PennFudanDataset_main.py
import os
import numpy as np
import torch
from PIL import Image
class PennFudanDataset(object):
def __init__(self, root, transforms):
self.root = root
self.transforms = transforms
# load all image files, sorting them to
# ensure that they are aligned
self.imgs = list(sorted(os.listdir(os.path.join(root, "PNGImages"))))
self.masks = list(sorted(os.listdir(os.path.join(root, "PedMasks"))))
def __getitem__(self, idx):
# load images ad masks
img_path = os.path.join(self.root, "PNGImages", self.imgs[idx])
mask_path = os.path.join(self.root, "PedMasks", self.masks[idx])
img = Image.open(img_path).convert("RGB")
# note that we haven't converted the mask to RGB,
# because each color corresponds to a different instance
# with 0 being background
mask = Image.open(mask_path)
# convert the PIL Image into a numpy array
mask = np.array(mask)
# instances are encoded as different colors
obj_ids = np.unique(mask)
# first id is the background, so remove it
obj_ids = obj_ids[1:]
# split the color-encoded mask into a set
# of binary masks
masks = mask == obj_ids[:, None, None]
# get bounding box coordinates for each mask
num_objs = len(obj_ids)
boxes = []
for i in range(num_objs):
pos = np.where(masks[i])
xmin = np.min(pos[1])
xmax = np.max(pos[1])
ymin = np.min(pos[0])
ymax = np.max(pos[0])
boxes.append([xmin, ymin, xmax, ymax])
# convert everything into a torch.Tensor
boxes = torch.as_tensor(boxes, dtype=torch.float32)
# there is only one class
labels = torch.ones((num_objs,), dtype=torch.int64)
masks = torch.as_tensor(masks, dtype=torch.uint8)
image_id = torch.tensor([idx])
area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
# suppose all instances are not crowd
iscrowd = torch.zeros((num_objs,), dtype=torch.int64)
target = {}
target["boxes"] = boxes
target["labels"] = labels
target["masks"] = masks
target["image_id"] = image_id
target["area"] = area
target["iscrowd"] = iscrowd
if self.transforms is not None:
img, target = self.transforms(img, target)
return img, target
def __len__(self):
return len(self.imgs)
import transforms as T
import transforms as T
def get_transform(train):
transforms = []
transforms.append(T.ToTensor())
if train:
transforms.append(T.RandomHorizontalFlip(0.5))
return T.Compose(transforms)
show_featuremap.py
import cv2
import torch
def show_featuremap(feature):
b,c,w,h = feature.shape
feature_show=torch.zeros(b*w,c*h)
for bi in range(0,b):
for ci in range(0,c):
#import pdb
#pdb.set_trace()
feature_show[bi*w:(bi+1)*w,ci*h:(ci+1)*h]=feature[bi,ci,:,:]
print(feature_show.shape)
cv2.imwrite("feature_bw_ch.png",255*feature_show.float().numpy())
import os
os.system("open feature_bw_ch.png")
return feature_show
if __name__=="__main__":
feature = torch.randn(1,10,100,100)
feature_show = show_featuremap(feature)
print(feature_show.shape)
cv2.imwrite("feature_bw_ch.png",255*feature_show.float().numpy())
import os
os.system("open feature_bw_ch.png")
transforms.py
import random
import torch
from torchvision.transforms import functional as F
def _flip_coco_person_keypoints(kps, width):
flip_inds = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
flipped_data = kps[:, flip_inds]
flipped_data[..., 0] = width - flipped_data[..., 0]
# Maintain COCO convention that if visibility == 0, then x, y = 0
inds = flipped_data[..., 2] == 0
flipped_data[inds] = 0
return flipped_data
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, image, target):
for t in self.transforms:
image, target = t(image, target)
return image, target
class RandomHorizontalFlip(object):
def __init__(self, prob):
self.prob = prob
def __call__(self, image, target):
if random.random() < self.prob:
height, width = image.shape[-2:]
image = image.flip(-1)
bbox = target["boxes"]
bbox[:, [0, 2]] = width - bbox[:, [2, 0]]
target["boxes"] = bbox
if "masks" in target:
target["masks"] = target["masks"].flip(-1)
if "keypoints" in target:
keypoints = target["keypoints"]
keypoints = _flip_coco_person_keypoints(keypoints, width)
target["keypoints"] = keypoints
return image, target
class ToTensor(object):
def __call__(self, image, target):
image = F.to_tensor(image)
return image, target
v0yolo_model.py
#coding:utf-8
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
import torch.nn.functional as F
import math
class VGG(nn.Module):
def __init__(self):
super(VGG,self).__init__()
# the vgg's layers
#self.features = features
cfg = [64,64,'M',128,128,'M',256,256,256,'M',512,512,512,'M',512,512,512,'M']
layers= []
batch_norm = False
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2,stride = 2)]
else:
conv2d = nn.Conv2d(in_channels,v,kernel_size=3,padding = 1)
if batch_norm:
layers += [conv2d,nn.Batchnorm2d(v),nn.ReLU(inplace=True)]
else:
layers += [conv2d,nn.ReLU(inplace=True)]
in_channels = v
# use the vgg layers to get the feature
self.features = nn.Sequential(*layers)
# 全局池化
self.avgpool = nn.AdaptiveAvgPool2d((7,7))
# 决策层:分类层
self.classifier = nn.Sequential(
nn.Linear(512*7*7,4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096,4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096,1000),
)
for m in self.modules():
if isinstance(m,nn.Conv2d):
nn.init.kaiming_normal_(m.weight,mode='fan_out',nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias,0)
elif isinstance(m,nn.BatchNorm2d):
nn.init.constant_(m.weight,1)
nn.init.constant_(m.bias,1)
elif isinstance(m,nn.Linear):
nn.init.normal_(m.weight,0,0.01)
nn.init.constant_(m.bias,0)
def forward(self,x):
x = self.features(x)
x_fea = x
x = self.avgpool(x)
x_avg = x
x = x.view(x.size(0),-1)
x = self.classifier(x)
return x,x_fea,x_avg
def extractor(self,x):
x = self.features(x)
return x
class YOLOV0(nn.Module):
def __init__(self):
super(YOLOV0,self).__init__()
vgg = VGG()
self.extractor = vgg.extractor
self.avgpool = nn.AdaptiveAvgPool2d((7,7))
# 决策层:检测层
self.detector = nn.Sequential(
nn.Linear(512*7*7,4096),
nn.ReLU(True),
nn.Dropout(),
#nn.Linear(4096,1470),
nn.Linear(4096,5),
)
for m in self.modules():
if isinstance(m,nn.Conv2d):
nn.init.kaiming_normal_(m.weight,mode='fan_out',nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias,0)
elif isinstance(m,nn.BatchNorm2d):
nn.init.constant_(m.weight,1)
nn.init.constant_(m.bias,1)
elif isinstance(m,nn.Linear):
nn.init.normal_(m.weight,0,0.01)
nn.init.constant_(m.bias,0)
def forward(self,x):
x = self.extractor(x)
#import pdb
#pdb.set_trace()
x = self.avgpool(x)
x = x.view(x.size(0),-1)
x = self.detector(x)
b,_ = x.shape
#x = x.view(b,7,7,30)
x = x.view(b,1,1,5)
return x
if __name__ == '__main__':
vgg = VGG()
x = torch.randn(1,3,512,512)
feature,x_fea,x_avg = vgg(x)
print(feature.shape)
print(x_fea.shape)
print(x_avg.shape)
yolov1 = YOLOV1()
feature = yolov1(x)
# feature_size b*7*7*30
print(feature.shape)
v0yolotrain.py
#coding:utf-8
from PennFudanDataset_main import *
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
from torch.utils.data import DataLoader
from v0yolo_model import *
import cv2
import numpy as np
import time
import sys
import os
## 数据处理
#服务器上的地址 /data/2020-722-YOLOV4-Practical-datasets/PenFudanPed
# dataset地址:/Users/zhaomignming/Documents/mmteacher/datasets
#datapath='/Users/zhaomignming/Documents/mmteacher/datasets/PennFudanPed'
datapath='/Users/zhaomingming/data_sets/PennFudanPed'
dataset = PennFudanDataset(datapath, get_transform(train=False))
dataset_test = PennFudanDataset(datapath, get_transform(train=False))
indices = torch.randperm(len(dataset)).tolist()
#dataset = torch.utils.data.Subset(dataset, indices[:-50])
#dataset_test = torch.utils.data.Subset(dataset_test, indices[-50:])
#dataset = torch.utils.data.Subset(dataset, indices[0:1])
#import pdb
#pdb.set_trace()
#dataset = torch.utils.data.Subset(dataset, indices[0:1])
dataset = torch.utils.data.Subset(dataset, [0])
dataset_test = torch.utils.data.Subset(dataset_test, indices[0:2])
def collate_fn(batch):
return tuple(zip(*batch))
# define training and validation data loaders
train_loader = torch.utils.data.DataLoader(
dataset, batch_size=1, shuffle=False, num_workers=1,
collate_fn=collate_fn)
val_loader = torch.utils.data.DataLoader(
dataset_test, batch_size=2, shuffle=False, num_workers=4,
collate_fn=collate_fn)
def input_process(batch):
#import pdb
#pdb.set_trace()
batch_size=len(batch[0])
input_batch= torch.zeros(batch_size,3,448,448)
for i in range(batch_size):
inputs_tmp = Variable(batch[0][i])
inputs_tmp1=cv2.resize(inputs_tmp.permute([1,2,0]).numpy(),(448,448))
inputs_tmp2=torch.tensor(inputs_tmp1).permute([2,0,1])
input_batch[i:i+1,:,:,:]= torch.unsqueeze(inputs_tmp2,0)
return input_batch
#batch[1][0]['boxes'][0]
def target_process(batch):
batch_size=len(batch[0])
target_batch= torch.zeros(batch_size,1,1,5)
#import pdb
#pdb.set_trace()
for i in range(batch_size):
#只处理batch中的第一张图片
# batch[1]表示label
# batch[0]表示image
bbox=batch[1][i]['boxes'][0]
_,hi,wi = batch[0][i].numpy().shape
bbox = bbox/ torch.tensor([wi,hi,wi,hi])
cbbox = torch.cat([torch.ones(1),bbox])
target_batch[i:i+1,:,:,:] = torch.unsqueeze(cbbox,0)
return target_batch
num_classes = 2
n_class = 2
batch_size = 6
epochs = 500
lr = 1e-3
momentum = 0
w_decay = 1e-5
step_size = 50
gamma = 0.5
# 定义模型
yolov0_model = YOLOV0()
import pdb
pdb.set_trace()
# 定义优化算法为sdg:随机梯度下降
optimizer = optim.SGD(yolov0_model.detector.parameters(), lr=lr, momentum=momentum, weight_decay=w_decay)
# 定义学习率变化策略
# 每30个epoch 学习率乘以0.5
scheduler = lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma) # decay LR by a factor of 0.5 every 30 epochs
# 矩阵形式写法,写法简单,但是可读性不强
def lossfunc(outputs,labels):
#import pdb
#pdb.set_trace()
tmp = (outputs-labels)**2
return torch.sum(tmp,0).view(1,5).mm(torch.tensor([10,0.0001,0.0001,0.0001,0.0001]).view(5,1))
# 定义直接拟合的学习率,可读性强
def lossfunc_details(outputs,labels):
# 判断维度
assert ( outputs.shape == labels.shape),"outputs shape[%s] not equal labels shape[%s]"%(outputs.shape,labels.shape)
b,w,h,c = outputs.shape
loss = 0
for bi in range(b):
for wi in range(w):
for hi in range(h):
#import pdb
#pdb.set_trace()
# detect_vector=[confidence,x,y,w,h]
detect_vector = outputs[bi,wi,hi]
gt_dv = labels[bi,wi,hi]
conf_pred = detect_vector[0]
conf_gt = gt_dv[0]
x_pred = detect_vector[1]
x_gt = gt_dv[1]
y_pred = detect_vector[2]
y_gt = gt_dv[2]
w_pred = detect_vector[3]
w_gt = gt_dv[3]
h_pred = detect_vector[4]
h_gt = gt_dv[4]
loss_confidence = (conf_pred-conf_gt)**2
#loss_geo = (x_pred-x_gt)**2 + (y_pred-y_gt)**2 + (w_pred**0.5-w_gt**0.5)**2 + (h_pred**0.5-h_gt**0.5)**2
loss_geo = (x_pred-x_gt)**2 + (y_pred-y_gt)**2 + (w_pred-w_gt)**2 + (h_pred-h_gt)**2
loss_tmp = loss_confidence + 0.3*loss_geo
#print("loss[%s,%s] = %s,%s"%(wi,hi,loss_confidence.item(),loss_geo.item()))
loss += loss_tmp
return loss
# train
def train():
for epoch in range(epochs):
ts = time.time()
for iter, batch in enumerate(train_loader):
optimizer.zero_grad()
# 取图片
inputs = input_process(batch)
# 取标注
labels = target_process(batch)
# 获取得到输出
outputs = yolov0_model(inputs)
#import pdb
#pdb.set_trace()
#loss = criterion(outputs, labels)
loss = lossfunc_details(outputs,labels)
loss.backward()
optimizer.step()
#print(torch.cat([outputs.detach().view(1,5),labels.view(1,5)],0).view(2,5))
if iter % 10 == 0:
# print(torch.cat([outputs.detach().view(1,5),labels.view(1,5)],0).view(2,5))
print("epoch{}, iter{}, loss: {}, lr: {}".format(epoch, iter, loss.data.item(),optimizer.state_dict()['param_groups'][0]['lr']))
#print("Finish epoch {}, time elapsed {}".format(epoch, time.time() - ts))
#print("*"*30)
#val(epoch)
scheduler.step()
# inference
def val(epoch):
yolov0_model.eval()
total_ious = []
pixel_accs = []
for iter, batch in enumerate(val_loader):
inputs = input_process(batch)
target,label= target_process(batch)
output = yolov1_model(inputs)
output = output.data.cpu().numpy()
N, _, h, w = output.shape
pred = output.transpose(0, 2, 3, 1).reshape(-1, n_class).argmax(axis=1).reshape(N, h, w)
if __name__ == "__main__":
train()
v1yolomodel.py
#coding:utf-8
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
import torch.nn.functional as F
import math
class VGG(nn.Module):
def __init__(self):
super(VGG,self).__init__()
# the vgg's layers
#self.features = features
cfg = [64,64,'M',128,128,'M',256,256,256,'M',512,512,512,'M',512,512,512,'M']
layers= []
batch_norm = False
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2,stride = 2)]
else:
conv2d = nn.Conv2d(in_channels,v,kernel_size=3,padding = 1)
if batch_norm:
layers += [conv2d,nn.Batchnorm2d(v),nn.ReLU(inplace=True)]
else:
layers += [conv2d,nn.ReLU(inplace=True)]
in_channels = v
# use the vgg layers to get the feature
self.features = nn.Sequential(*layers)
# 全局池化
self.avgpool = nn.AdaptiveAvgPool2d((7,7))
# 决策层:分类层
self.classifier = nn.Sequential(
nn.Linear(512*7*7,4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096,4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096,1000),
)
for m in self.modules():
if isinstance(m,nn.Conv2d):
nn.init.kaiming_normal_(m.weight,mode='fan_out',nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias,0)
elif isinstance(m,nn.BatchNorm2d):
nn.init.constant_(m.weight,1)
nn.init.constant_(m.bias,1)
elif isinstance(m,nn.Linear):
nn.init.normal_(m.weight,0,0.01)
nn.init.constant_(m.bias,0)
def forward(self,x):
x = self.features(x)
x_fea = x
x = self.avgpool(x)
x_avg = x
x = x.view(x.size(0),-1)
x = self.classifier(x)
return x,x_fea,x_avg
def extractor(self,x):
x = self.features(x)
return x
class YOLOV1(nn.Module):
def __init__(self):
super(YOLOV1,self).__init__()
vgg = VGG()
self.extractor = vgg.extractor
self.avgpool = nn.AdaptiveAvgPool2d((7,7))
# 决策层:检测层
self.detector = nn.Sequential(
nn.Linear(512*7*7,4096),
nn.ReLU(True),
nn.Dropout(),
#nn.Linear(4096,1470),
nn.Linear(4096,245),
#nn.Linear(4096,5),
)
for m in self.modules():
if isinstance(m,nn.Conv2d):
nn.init.kaiming_normal_(m.weight,mode='fan_out',nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias,0)
elif isinstance(m,nn.BatchNorm2d):
nn.init.constant_(m.weight,1)
nn.init.constant_(m.bias,1)
elif isinstance(m,nn.Linear):
nn.init.normal_(m.weight,0,0.01)
nn.init.constant_(m.bias,0)
def forward(self,x):
x = self.extractor(x)
#import pdb
#pdb.set_trace()
x = self.avgpool(x)
x = x.view(x.size(0),-1)
x = self.detector(x)
b,_ = x.shape
#x = x.view(b,7,7,30)
x = x.view(b,7,7,5)
#x = x.view(b,1,1,5)
return x
if __name__ == '__main__':
vgg = VGG()
x = torch.randn(1,3,512,512)
feature,x_fea,x_avg = vgg(x)
print(feature.shape)
print(x_fea.shape)
print(x_avg.shape)
yolov1 = YOLOV1()
feature = yolov1(x)
# feature_size b*7*7*30
print(feature.shape)
v1yolotrain.py
#coding:utf-8
from PennFudanDataset_main import *
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
from torch.utils.data import DataLoader
from v1yolomodel import *
import cv2
import numpy as np
import time
import sys
import os
## 数据处理
#服务器上的地址 /data/2020-722-YOLOV4-Practical-datasets/PenFudanPed
# dataset地址:/Users/zhaomignming/Documents/mmteacher/datasets
#datapath='/Users/zhaomignming/Documents/mmteacher/datasets/PennFudanPed'
datapath='/Users/zhaomingming/data_sets/PennFudanPed'
dataset = PennFudanDataset(datapath, get_transform(train=False))
dataset_test = PennFudanDataset(datapath, get_transform(train=False))
indices = torch.randperm(len(dataset)).tolist()
#dataset = torch.utils.data.Subset(dataset, indices[:-50])
#dataset_test = torch.utils.data.Subset(dataset_test, indices[-50:])
#dataset = torch.utils.data.Subset(dataset, indices[0:1])
#import pdb
#pdb.set_trace()
#dataset = torch.utils.data.Subset(dataset, indices[0:1])
dataset = torch.utils.data.Subset(dataset, [0])
dataset_test = torch.utils.data.Subset(dataset_test, indices[0:2])
def collate_fn(batch):
return tuple(zip(*batch))
# define training and validation data loaders
train_loader = torch.utils.data.DataLoader(
dataset, batch_size=1, shuffle=False, num_workers=1,
collate_fn=collate_fn)
val_loader = torch.utils.data.DataLoader(
dataset_test, batch_size=2, shuffle=False, num_workers=4,
collate_fn=collate_fn)
def input_process(batch):
#import pdb
#pdb.set_trace()
batch_size=len(batch[0])
input_batch= torch.zeros(batch_size,3,448,448)
for i in range(batch_size):
inputs_tmp = Variable(batch[0][i])
inputs_tmp1=cv2.resize(inputs_tmp.permute([1,2,0]).numpy(),(448,448))
inputs_tmp2=torch.tensor(inputs_tmp1).permute([2,0,1])
input_batch[i:i+1,:,:,:]= torch.unsqueeze(inputs_tmp2,0)
return input_batch
#batch[1][0]['boxes'][0]
def target_process(batch,grid_number=7):
# batch[1]表示label
# batch[0]表示image
batch_size=len(batch[0])
target_batch= torch.zeros(batch_size,grid_number,grid_number,5)
#import pdb
#pdb.set_trace()
for i in range(batch_size):
labels = batch[1]
batch_labels = labels[i]
#import pdb
#pdb.set_trace()
number_box = len(batch_labels['boxes'])
for wi in range(grid_number):
for hi in range(grid_number):
# 便利每个标注的框
for bi in range(number_box):
bbox=batch_labels['boxes'][bi]
_,himg,wimg = batch[0][i].numpy().shape
bbox = bbox/ torch.tensor([wimg,himg,wimg,himg])
#import pdb
#pdb.set_trace()
center_x= (bbox[0]+bbox[2])*0.5
center_y= (bbox[1]+bbox[3])*0.5
#print("[%s,%s,%s],[%s,%s,%s]"%(wi/grid_number,center_x,(wi+1)/grid_number,hi/grid_number,center_y,(hi+1)/grid_number))
if center_x<=(wi+1)/grid_number and center_x>=wi/grid_number and center_y<=(hi+1)/grid_number and center_y>= hi/grid_number:
#pdb.set_trace()
cbbox = torch.cat([torch.ones(1),bbox])
# 中心点落在grid内,
target_batch[i:i+1,wi:wi+1,hi:hi+1,:] = torch.unsqueeze(cbbox,0)
#else:
#cbbox = torch.cat([torch.zeros(1),bbox])
#import pdb
#pdb.set_trace()
#rint(target_batch[i:i+1,wi:wi+1,hi:hi+1,:])
#target_batch[i:i+1,wi:wi+1,hi:hi+1,:] = torch.unsqueeze(cbbox,0)
return target_batch
num_classes = 2
n_class = 2
batch_size = 6
epochs = 500
lr = 1e-3
momentum = 0
w_decay = 1e-5
step_size = 50
gamma = 0.5
# 定义模型
yolov1_model = YOLOV1()
import pdb
pdb.set_trace()
# 定义优化算法为sdg:随机梯度下降
optimizer = optim.SGD(yolov1_model.detector.parameters(), lr=lr, momentum=momentum, weight_decay=w_decay)
# 定义学习率变化策略
# 每30个epoch 学习率乘以0.5
scheduler = lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma) # decay LR by a factor of 0.5 every 30 epochs
# 矩阵形式写法,写法简单,但是可读性不强
def lossfunc(outputs,labels):
#import pdb
#pdb.set_trace()
tmp = (outputs-labels)**2
return torch.sum(tmp,0).view(1,5).mm(torch.tensor([10,0.0001,0.0001,0.0001,0.0001]).view(5,1))
# 定义直接拟合的学习率,可读性强
def lossfunc_details(outputs,labels):
# 判断维度
assert ( outputs.shape == labels.shape),"outputs shape[%s] not equal labels shape[%s]"%(outputs.shape,labels.shape)
#import pdb
#pdb.set_trace()
b,w,h,c = outputs.shape
loss = 0
#import pdb
#pdb.set_trace()
conf_loss_matrix = torch.zeros(b,w,h)
geo_loss_matrix = torch.zeros(b,w,h)
loss_matrix = torch.zeros(b,w,h)
for bi in range(b):
for wi in range(w):
for hi in range(h):
#import pdb
#pdb.set_trace()
# detect_vector=[confidence,x,y,w,h]
detect_vector = outputs[bi,wi,hi]
gt_dv = labels[bi,wi,hi]
conf_pred = detect_vector[0]
conf_gt = gt_dv[0]
x_pred = detect_vector[1]
x_gt = gt_dv[1]
y_pred = detect_vector[2]
y_gt = gt_dv[2]
w_pred = detect_vector[3]
w_gt = gt_dv[3]
h_pred = detect_vector[4]
h_gt = gt_dv[4]
loss_confidence = (conf_pred-conf_gt)**2
#loss_geo = (x_pred-x_gt)**2 + (y_pred-y_gt)**2 + (w_pred**0.5-w_gt**0.5)**2 + (h_pred**0.5-h_gt**0.5)**2
loss_geo = (x_pred-x_gt)**2 + (y_pred-y_gt)**2 + (w_pred-w_gt)**2 + (h_pred-h_gt)**2
loss_geo = conf_gt*loss_geo
loss_tmp = loss_confidence + 0.3*loss_geo
#print("loss[%s,%s] = %s,%s"%(wi,hi,loss_confidence.item(),loss_geo.item()))
loss += loss_tmp
conf_loss_matrix[bi,wi,hi]=loss_confidence
geo_loss_matrix[bi,wi,hi]=loss_geo
loss_matrix[bi,wi,hi]=loss_tmp
#打印出batch中每张片的位置loss,和置信度输出
print(geo_loss_matrix)
print(outputs[0,:,:,0]>0.5)
return loss,loss_matrix,geo_loss_matrix,conf_loss_matrix
# train
def train():
for epoch in range(epochs):
ts = time.time()
for iter, batch in enumerate(train_loader):
optimizer.zero_grad()
# 取图片
inputs = input_process(batch)
# 取标注
labels = target_process(batch)
# 获取得到输出
outputs = yolov1_model(inputs)
#import pdb
#pdb.set_trace()
#loss = criterion(outputs, labels)
loss,lm,glm,clm = lossfunc_details(outputs,labels)
loss.backward()
optimizer.step()
#print(torch.cat([outputs.detach().view(1,5),labels.view(1,5)],0).view(2,5))
if iter % 10 == 0:
# print(torch.cat([outputs.detach().view(1,5),labels.view(1,5)],0).view(2,5))
print("epoch{}, iter{}, loss: {}, lr: {}".format(epoch, iter, loss.data.item(),optimizer.state_dict()['param_groups'][0]['lr']))
#print("Finish epoch {}, time elapsed {}".format(epoch, time.time() - ts))
#print("*"*30)
#val(epoch)
scheduler.step()
# inference
def val(epoch):
yolov1_model.eval()
total_ious = []
pixel_accs = []
for iter, batch in enumerate(val_loader):
inputs = input_process(batch)
target,label= target_process(batch)
output = yolov1_model(inputs)
output = output.data.cpu().numpy()
N, _, h, w = output.shape
pred = output.transpose(0, 2, 3, 1).reshape(-1, n_class).argmax(axis=1).reshape(N, h, w)
if __name__ == "__main__":
train()
数据集的路径:/data/2020-722-YOLOV4-Practical-datasets