- 搜广推校招面经九十三
Y1nhl
搜广推面经机器学习人工智能python算法推荐算法pytorch搜索算法
字节懂车帝一面一、NDCG(NormalizedDiscountedCumulativeGain)的计算NDCG是信息检索和排序任务中常用的评价指标,用于衡量模型预测的排序质量与真实相关性排序的一致程度。1.1.DCG@k(DiscountedCumulativeGain)DCG@k=∑i=1krelilog2(i+1)\text{DCG@k}=\sum_{i=1}^{k}\frac{rel_i
- 搜广推校招面经九十一
美团机器学习/数据挖掘算法工程师_二面一、介绍一下ESMM模型,是否有进行过函数推导传统的转化率建模方式:只用发生点击(click=1)的样本来训练CVR模型。CVR定义如下:CVR=P(y=1∣x,z=1)CVR=P(y=1|x,z=1)CVR=P(y=1∣x,z=1)y=1表示用户发生了转化(如购买)z=1表示用户点击了广告这样做的问题:样本选择偏差(SampleSelectionBias,S
- 搜广推校招面经八十一
Y1nhl
搜广推面经开发语言机器学习人工智能深度学习推荐算法搜索算法pytorch
OPPO搜广推一面面经一、介绍一下PLE模型在多任务学习(Multi-TaskLearning,MTL)中,多个任务共享部分模型结构,以提升整体效果。然而,不同任务间存在任务冲突(TaskConflict)问题,即不同任务对参数的优化方向不一致,导致性能下降。论文:Tang,Hongyan,etal.“ProgressiveLayeredExtraction(PLE):ANovelMulti-Ta
- 搜广推校招面经七十六
Y1nhl
搜广推面经深度学习人工智能pytorch推荐算法搜索算法
小米数据挖掘算法一、核函数(KernelFunction)有什么用核函数是一种用来计算数据在高维空间中内积的数学工具,不需要显式地进行维度变换,即可在原始空间中完成高维特征的计算。它是核技巧(KernelTrick)的核心,使得某些线性模型(如SVM)能在非线性空间中工作。核技巧:将低维非线性问题映射到高维线性问题,并通过核函数避免显式映射。1.1.内积vs映射设有两个向量:x=[x1,x2],我
- 搜广推校招面经七十三
Y1nhl
搜广推面经机器学习人工智能深度学习推荐算法搜索算法算法
字节推荐算法字节比较注重实习项目,问的很细。一、点击率(CTR)建模中如何保证广告位自上而下CTR率依次递减?见【搜广推校招面经六十六】实际中,很多地方都需要单调性限制,比如如果我们预测广告的曝光率,不同广告位的广告肯定曝光率更高。如果预测一张券的使用率或者效果,一定是减免程度越大的效果更好。在推荐系统或信息流广告中,广告位是有强展示位置信号的:广告位越靠上,用户关注度越高,CTR趋势越高。通常业
- 搜广推校招面经五十七
Y1nhl
搜广推面经搜索算法python推荐算法机器学习人工智能
虾皮推荐算法一、AUC有什么缺陷,有更合适的指标去解决这个问题1.1.AUC的缺陷尽管AUC是一个广泛使用的指标,但它存在以下缺陷:1.1.1.无法反映真实的概率分布AUC仅考虑正负样本的相对排序,不关心预测概率的具体数值。例如:预测值{0.9,0.8,0.7,0.6}和{0.6,0.5,0.4,0.3}可能具有相同的AUC,但第一个更可信。1.1.2.不考虑真实决策阈值AUC计算基于所有可能的阈
- 搜广推校招面经七十四
Y1nhl
搜广推面经机器学习人工智能算法搜索算法推荐算法广告算法python
腾讯视频搜广推一、召回中的正负样本定义推荐系统中的召回阶段是从海量候选物品中快速筛出一部分“可能感兴趣”的物品,为排序阶段准备候选集。不同业务场景对正负样本的定义可能有差异,但是大差不差。正样本(PositiveSamples)用户真实点击、收藏、购买、点赞等行为对应的物品具体场景:推荐系统:用户实际点击/购买的物品搜索系统:与查询真正相关的文档广告系统:用户实际点击的广告负样本(Negative
- 搜广推校招面经六十六
Y1nhl
搜广推面经机器学习python推荐算法广告算法搜索算法pytorch深度学习
高德推荐算法一、介绍Transformer中的位置编码(PositionalEncoding)在Transformer结构中,由于模型没有内置的序列信息(不像RNN那样有时间步的顺序依赖),需要通过**位置编码(PositionalEncoding,PE)**来提供位置信息,使得模型能够区分不同token的相对位置。1.1.位置编码的作用由于Transformer采用的是自注意力机制(Self-A
- 搜广推校招面经二十四
Y1nhl
搜广推面经推荐算法搜索引擎机器学习算法求职招聘
阿里推荐算法一、无重复字符的最长子串(hot100_滑动窗口_中等)classSolution:deflengthOfLongestSubstring(self,s:str)->int:dic={}left=-1res=0forright,s1inenumerate(s):ifs1indic:left=max(dic[s1],left)dic[s1]=rightres=max(res,right-
- 搜广推校招面经七十二
Y1nhl
搜广推面经学习深度学习人工智能pytorch推荐算法机器学习搜索算法
滴滴搜索算法一、模型为什么不用单任务估pCVR,这不是更加直接?这是一个很有代表性的问题,在广告、推荐等场景中,经常会面临预测点击率(CTR)、转化率(CVR)或预估转化点击率(pCVR)的任务。首先:pCVR=P(Conversion∣Click)pCVR=P(Conversion|Click)pCVR=P(Conversion∣Click)也就是说,pCVR是在用户点击之后发生转化的概率,它是
- 搜广推校招面经七十一
Y1nhl
搜广推面经数学建模深度学习推荐算法搜索算法广告算法人工智能
滴滴算法工程师面经一、矩阵分解的原理与优化意义矩阵分解在推荐系统中是一个非常核心的方法,尤其是在协同过滤(CollaborativeFiltering)中。我们可以通过用户对物品的评分行为来推测用户的喜好,从而推荐他们可能喜欢的内容。1.1.直观理解:补全稀疏矩阵在推荐系统中,我们常见的用户-物品评分矩阵RRR是一个非常稀疏的矩阵:用户\物品电影A电影B电影C电影D用户15?3?用户2?4?2用户
- 搜广推校招面经六十五
Y1nhl
搜广推面经机器学习算法人工智能推荐算法搜索算法
蚂蚁金服-信贷部门一、为什么使用LayerNormalization而不是BatchNormalization?1.1.BatchNormalization(BN)的局限性BatchNormalization(BN)是一种常用的归一化方法,它在批次维度(batch)上进行归一化,计算均值和方差来调整激活值。但BN存在以下问题:(1)依赖BatchSizeBN需要在每个mini-batch内计算均值
- 搜广推校招面经五十八
Y1nhl
搜广推面经机器学习算法人工智能推荐算法搜索算法深度学习求职招聘
小红书推荐算法一、BN(BatchNormalization)在训练和测试的区别BatchNormalization(批归一化,BN)是一种加速深度神经网络训练的技术,它通过对每个mini-batch计算均值和方差来归一化输入特征,从而稳定训练过程,减少梯度消失/梯度爆炸问题。1.1.训练阶段在训练过程中,BN采用mini-batch统计信息进行归一化:计算方式:计算当前mini-batch的均值
- 搜广推校招面经五十六
Y1nhl
搜广推面经深度学习推荐算法搜索算法广告算法人工智能
字节推荐算法一、Attention的复杂度是多少?见【搜广推校招面经三十八】二、如何对普适性强的物品(如新华字典)设计指标进行降权2.1.问题背景普适性强的物品(如新华字典)在推荐系统或搜索排序中可能频繁出现,影响多样性和用户体验。因此,需要设计指标对其进行降权。但-平衡用户需求:在降权的同时,仍需满足用户对普适性物品的潜在需求。2.2.具体指标设计2.2.1.物品流行度降权定义:根据物品的流行度
- 搜广推校招面经三十
Y1nhl
搜广推面经网络leetcode贪心算法python搜索引擎推荐算法
虾皮推荐一、收益是由什么带来的,出价提升是否会导致ROI降低(第一段实习是广告算法,竞价出价)1.1.收益的来源(1)转化量转化量是直接带来收益的核心指标,例如购买次数、注册用户数、下载量等。转化量通常与流量(曝光)、点击率(CTR)、转化率(CVR)等因素相关。(2)转化价值每次转化的价值(如单笔订单金额、用户生命周期价值LTV)也直接影响收益。如果转化价值较高,即使转化量较低,也可能带来较高的
- 搜广推校招面经五十四
Y1nhl
搜广推面经搜索算法python推荐算法机器学习人工智能
美团推荐算法一、手撕Transformer的位置编码1.1.位置编码的作用Transformer模型没有显式的序列信息(如RNN的循环结构),因此需要通过位置编码(PositionalEncoding)为输入序列中的每个位置添加位置信息。位置编码的作用是:提供序列位置信息:帮助模型理解输入序列中元素的顺序。保持唯一性和连续性:确保每个位置的位置编码是唯一的,且相邻位置的位置编码是连续的。1.2.位
- 搜广推校招面经五十三
Y1nhl
搜广推面经python机器学习人工智能推荐算法搜索算法算法
小红书推荐算法一、ESMM(EntireSpaceMulti-TaskModel)ESMM(EntireSpaceMulti-TaskModel)是一种用于解决推荐系统中多任务学习问题的模型。它由阿里巴巴团队提出,主要用于处理点击率(CTR)和转化率(CVR)的联合预测问题。1.1.背景在推荐系统中,CTR和CVR是两个重要的指标:CTR(Click-ThroughRate):用户点击广告的概率。
- 搜广推校招面经五十五
Y1nhl
搜广推面经深度学习机器学习python推荐算法搜索算法广告算法人工智能
腾讯搜推面经一、双塔模型有什么缺点双塔模型(Two-TowerModel)是一种常见的推荐系统或检索系统架构,尤其在处理大规模用户-物品交互数据时表现出色。1.1.特征交互受限问题:双塔模型将用户特征和物品特征分别编码为两个独立的向量(用户塔和物品塔),然后在顶层通过简单的点积或余弦相似度计算得分。这种设计限制了用户特征和物品特征之间的细粒度交互。影响:无法捕捉复杂的特征交叉信息,可能导致模型性能
- 搜广推校招面经四十四
Y1nhl
搜广推面经python机器学习人工智能pytorch开发语言
快手主站推荐算法一、因果里面前门准则是什么(Front-DoorCriterion)前门准则是因果推断中的一个重要概念,用于在存在未观测混杂因素的情况下识别因果效应。它由朱迪亚·珀尔(JudeaPearl)提出,是后门准则的补充。1.1.定义前门准则适用于以下情况:存在一个中介变量MMM,它完全介导了处理变量XXX对结果变量YYY的因果效应。处理变量XXX和结果变量YYY之间存在未观测的混杂因素U
- 搜广推校招面经三十九
Y1nhl
搜广推面经数据挖掘人工智能机器学习深度学习算法推荐算法
小红书﹣图搜一、两个整数的汉明距离两个整数之间的汉明距离是指这两个数字对应二进制位相同位置不同的个数。换句话说,它就是将一个整数变成另一个整数所需要改变的二进制位的数量。例如,如果两个整数在它们的二进制表示中有三个位置上的比特不同,那么这两个整数的汉明距离就是3。计算两个整数的汉明距离可以通过以下步骤实现:首先对这两个整数进行异或(XOR)运算。异或运算是按位操作,当且仅当输入位不同时输出为1。因
- 搜广推校招面经三十八
Y1nhl
搜广推面经算法pytorch推荐算法搜索算法机器学习
字节推荐算法一、场景题:在抖音场景下为用户推荐广告词,吸引用户点击搜索,呈现广告这一流程的关键点以及可能遇到的困难。二、Transformer中对梯度消失或者梯度爆炸的处理在Transformer模型中,梯度消失和梯度爆炸是深度学习中常见的问题,尤其是在处理长序列数据时。为了克服这些问题,Transformer采用了一系列技术:2.1.残差连接(ResidualConnections)每个子层(包
- 搜广推校招面经四十
Y1nhl
搜广推面经机器学习搜索算法人工智能推荐算法算法
字节-广告算法一、离线AUC涨了,但AB实验没涨,可能的原因?1.1.线上线下得样本空间不一致(SSB)线上模型使用的是实时获取的点击、曝光数据。线下使用的离线数据。这可能导致数据分布存在偏差。线上数据受曝光机制、冷启动、新品推荐等因素影响,与离线数据不完全匹配。线下数据存在采样偏差1.2.AUC这些指标无法衡量线上打分准确性。AUC毕竟只是衡量排序1.2.1.引申:PCOC(预估值/真实后验概率
- 搜广推校招面经三十六
Y1nhl
搜广推面经机器学习人工智能算法python深度学习pytorch推荐算法
快手推荐算法一、有10亿个数据量如何快速做召回在推荐系统的召回阶段,面对海量数据(如10亿条记录),需要快速筛选出与目标用户相关的候选物品集合。由于数据规模巨大,直接对所有数据进行计算是不现实的,因此需要设计高效的召回策略。1.1.核心挑战数据规模大:10亿级别的数据无法直接加载到内存中。实时性要求高:召回过程通常需要在毫秒级完成。稀疏性问题:用户行为数据通常是稀疏的,导致相似性计算复杂度增加。多
- 数据挖掘校招面经二
Y1nhl
搜广推面经数据挖掘人工智能机器学习深度学习算法python
得物数据挖掘一、线性回归y=ax中参数a如何计算1.1.a是待学习参数在线性回归中,a是模型的权重(或斜率),需要通过数据来学习其最优值。学习的目标是找到a的值,使得模型的预测值y^=ax\hat{y}=axy^=ax尽可能接近真实值y。1.2.最小二乘法在线性回归中,通常使用最小二乘法来学习a。最小二乘法的目标是最小化误差平方和(即真实值y和预测值y^\hat{y}y^之间的差异):误差平方和=
- 机器学习校招面经二
Y1nhl
搜广推面经机器学习人工智能算法推荐算法数据挖掘搜索算法pytorch
快手机器学习算法一、AUC(AreaUndertheROCCurve)怎么计算?AUC接近1可能的原因是什么?见【搜广推校招面经四】AUC是评估分类模型性能的重要指标,用于衡量模型在不同阈值下区分正负样本的能力。它是ROC曲线(ReceiverOperatingCharacteristicCurve)下的面积。1.1.ROC曲线的坐标ROC曲线以真正例率(TruePositiveRate,TPR)
- 搜广推校招面经二十八
Y1nhl
搜广推面经推荐算法求职招聘搜索引擎机器学习算法
蚂蚁推荐算法一、介绍损失函数、为什么分类和回归的损失函数不能共用损失函数的介绍见【搜广推校招面经十八】1.1.分类和回归损失函数不能共用的原因分类和回归任务的目标不同,因此它们的损失函数设计也存在本质区别:输出空间的不同回归任务:目标是预测一个连续值(如房价、温度等)。输出空间是连续的实数范围。分类任务:目标是预测离散的类别标签(如“猫”或“狗”)或者概率。输出空间通常是有限的类别集合。误差衡量方
- 搜广推校招面经十九
Y1nhl
搜广推面经搜索引擎推荐算法python求职招聘
快手推荐算法一、1*1的cnn有什么作用?1.1.降维与通道数调整(ChannelReduction)在CNN中,特征图(FeatureMap)通常有多个通道(channels)。1×1卷积可以用于减少通道数,从而降低计算量,提高模型效率。1×1卷积可以增加通道数,以增强特征表达能力。示例代码(PyTorch):importtorchimporttorch.nnasnnconv1x1=nn.Con
- 代码随想录训练营第一天|704. 二分查找|27. 移除元素
2301_79125431
java
【新手上路】语法入门&算法入门题单职场鸡汤—众生皆苦,怎样才能快乐一些?【影石Insta360-24届研发校招岗位-面经分享】统一给这些23届秋招毁意向、毁约的无良公司发封感谢信!暑期实习总结:致敬我的阿里云25面多益网络招人特殊经验总结华为上海,圣无线部门,技术预研##华为(59)#滴滴中望二面C++游戏海外市场营销/本地化面经烟草专卖局财务校招面经烟草专卖局(二面)财务校招面经模拟厂做数字就是
- 多益校招面经--软件开发岗
weixin_43783216
面经学习心得c++面试
多益网络2021校招面经软件开发岗笔试通过专业面试凉凉。。。第一次面试,太紧张了,很多东西提起来脑子一片空白。。。现在结束后想了一下都能想明白。。。以下是面经1、个人介绍2、项目介绍3、开发语言的了解程度(个人是C++)4、C++和JAVA的区别5、一道算法题给定一个集合S(没有重复元素),输出它所有的子集6、如果要设计一个实时排行榜处理海量数据,怎么实现?7、数据库8、STL容器9、如何自己实现
- 格力软件设计岗位2024春招一面记录
疯狂学习GIS
保研考研毕设求职经验C++学习与应用面试春招校招面经格力软件开发程序员
本文介绍2024届秋招中,格力的软件开发岗位一面的面试基本情况、提问问题等。 2024年01月投递了格力的电控软件设计岗位,但是后来简历似乎因为被调剂,被送到了另一个部门;具体部门叫什么我也没听清楚,但岗位就也还是软件开发方向的岗位。目前完成了一面,在这里记录一下一面经历;截至目前,面试已经结束大约半个月了,暂时还没有下文;但是想着争取年前将所有未完成的校招面经博客都发出来,所以就先将这一次
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb