密码学累加器最早是由 Josh Benaloh 和 Michael de Mare 提出的,原始论文《One-way accumulators: A decentralized alternative to digital sinatures (extended abstract) 》[1] 于 1993 年发表在欧洲密码学会议(EUROCRYPT)上。这篇论文最初就是为了解决区块链上的数据可访问性问题而作的。
累加器可用于生成一个短的binding commitment to a set of elements together with short membership and/or non-membership proofs for any element in the set. 利用commitment,这些proofs可以publicly verified。
Merkle tree是最简单的累加器。
累加器分为动态的和静态的:
通用累加器都是动态累加器,且支持membership proof和non-membership proof。
动态累加器的实现方式通常有:
Bezout
成立。其中基于RSA和bilinear的动态累加器天然支持batching of membership proofs,但是不支持batching of non-membership proofs。在此基础上构建的Vector commitments(如[LY10, CF13, LRY16])具有constant size openings,但是setup parameters非常large。
传统的累加器会引入一个可信任的第三方——accumulator manager,这个可信任的第三方拥有trapdoor可有效删除累加器中的元素,同时创建任意元素的membership witness。Lipmaa[Lip12]是第一个基于hidden order group构建不需要trusted setup的静态累加器。
NonMemWitUp ( A t , u x t , x , u p m s g ) (A_t, u_x^t,x,upmsg) (At,uxt,x,upmsg)
补充MemWitUp
和NonMemWitUp
的算法细节如下:
MemWitUp ( A t , w x t , x , u p m s g ) (A_t, w_x^t,x,upmsg) (At,wxt,x,upmsg)
- if: update membership proof for add:
- if: x==upmsg: return w x t w_x^t wxt
- else:
- w x t + 1 = ( w x t ) u p m s g w_x^{t+1}=(w_x^t)^{upmsg} wxt+1=(wxt)upmsg
- return w x t + 1 w_x^{t+1} wxt+1
- else if: update membership proof for delete:
- if: x==upmsg.x: return ⊥ \perp ⊥
- else:
- choose (a,b) for a ∗ x + b ∗ u p m s g . x = 1 a*x+b*upmsg.x=1 a∗x+b∗upmsg.x=1 // ∵ g c d ( x , u p m s g . x ) = 1 \because gcd(x,upmsg.x)=1 ∵gcd(x,upmsg.x)=1
- w x t + 1 = ( w x t ) b ∗ ( u p m s g . A t + 1 ) a w_x^{t+1} = (w_x^t)^b*(upmsg.A_{t+1})^a wxt+1=(wxt)b∗(upmsg.At+1)a
- return w x t + 1 w_x^{t+1} wxt+1
- else: return ⊥ \perp ⊥
NonMemWitUp ( A t , u x t , x , u p m s g ) (A_t, u_x^t,x,upmsg) (At,uxt,x,upmsg)
- if: update NonMembership proof for add:
- if: x==upmsg: return ⊥ \perp ⊥ //because x is now a membership.
- else:
- A t + 1 = ( A t ) u p m s g A_{t+1}=(A_t)^{upmsg} At+1=(At)upmsg
- a = u x t . a a= u_x^t.a a=uxt.a
- B = u x t . B B= u_x^t.B B=uxt.B // ∵ A t a ∗ B x = = g \because A_t^a*B^x==g ∵Ata∗Bx==g
- choose (c,d) for c ∗ x + d ∗ u p m s g = 1 c*x+d*upmsg=1 c∗x+d∗upmsg=1 // ∵ g c d ( x , u p m s g ) = 1 \because gcd(x,upmsg)=1 ∵gcd(x,upmsg)=1
- choose (a’,r) for a ′ ∗ u p m s g = a − r x a'*upmsg=a-rx a′∗upmsg=a−rx // ∵ a ∗ c ∗ x + a ∗ d ∗ u p m s g = a \because a*c*x+a*d*upmsg=a ∵a∗c∗x+a∗d∗upmsg=a
- u x t + 1 = ( a ′ , B ∗ A t r ) u_x^{t+1}=(a', B*A_t^r) uxt+1=(a′,B∗Atr) // ∵ A t + 1 a ′ ∗ ( B ∗ A t r ) x = = g \because {A_{t+1}^{a'}}*(B*A_t^r)^x==g ∵At+1a′∗(B∗Atr)x==g
- return u x t + 1 u_x^{t+1} uxt+1
- else if: update NonMembership proof for delete:
- if: x==upmsg.x: return ⊥ \perp ⊥ //because nonMembership element cannot be deleted.
- else:
- A t + 1 = u p m s g . A t + 1 A_{t+1}=upmsg.A_{t+1} At+1=upmsg.At+1
- A t = u p m s g . A t A_{t}=upmsg.A_{t} At=upmsg.At
- x ′ = u p m s g . x x'=upmsg.x x′=upmsg.x //It has A t + 1 x ′ = A t A_{t+1}^{x'}=A_t At+1x′=At.
- a = u x t . a a= u_x^t.a a=uxt.a
- B = u x t . B B= u_x^t.B B=uxt.B // ∵ A t a ∗ B x = = g \because A_t^a*B^x==g ∵Ata∗Bx==g
- choose (c,d) for c ∗ x + d ∗ x ′ = 1 c*x+d*x'=1 c∗x+d∗x′=1 // ∵ g c d ( x , x ′ ) = 1 \because gcd(x,x')=1 ∵gcd(x,x′)=1
- choose (a’,r) for a ′ = a x ′ + r x a'=ax'+rx a′=ax′+rx // ∵ a ∗ c ∗ x + a ∗ d ∗ x ′ = a \because a*c*x+a*d*x'=a ∵a∗c∗x+a∗d∗x′=a
- u x t + 1 = ( a ′ , B ∗ A t + 1 − r ) u_x^{t+1}=(a', B*A_{t+1}^{-r}) uxt+1=(a′,B∗At+1−r) // ∵ A t + 1 a ′ ∗ ( B ∗ A t + 1 − r ) x = = g \because {A_{t+1}^{a'}}*(B*A_{t+1}^{-r})^x==g ∵At+1a′∗(B∗At+1−r)x==g
- return u x t + 1 u_x^{t+1} uxt+1
- else: return ⊥ \perp ⊥
以上补充实际是结合2007年论文《Universal Accumulators with Efficient Nonmembership Proofs》得出的:
累加器的不可否认性,即同一元素 x x x,不可能同时既在member proof中,又在non-member proof中。
Bezout ( x , y ) (x,y) (x,y)是指,若 x , y x,y x,y互为素数,则存在 a , b ∈ Z a,b\in Z a,b∈Z,使得 a x + b y = 1 ax+by=1 ax+by=1成立。
利用Bezout ( x , y ) (x,y) (x,y)来求 ( x y ) − t h (xy)-th (xy)−th root。具体实现细节为:
已知 w 1 x = w 2 y = z w_1^x=w_2^y=z w1x=w2y=z,有 a x + b y = 1 ax+by=1 ax+by=1,则有:
z z z的 ( x y ) − t h (xy)-th (xy)−th root为 w 1 b w 2 a w_1^bw_2^a w1bw2a。【 ∵ ( w 1 b w 2 a ) x y = z a x + b y = z \because (w_1^bw_2^a)^{xy}=z^{ax+by}=z ∵(w1bw2a)xy=zax+by=z】
已知 y = g x y=g^x y=gx,且 x = x 1 x 2 . . . x n x=x_1x_2...x_n x=x1x2...xn,求 y y y的 x i − t h x_i-th xi−th root,若直接计算的话,需要的算法复杂度为 O ( n 2 ) O(n^2) O(n2),若采用RootFactor算法,则复杂度降为 O ( n l o g ( n ) ) O(nlog(n)) O(nlog(n)):
vector commitment(VC)具有与累加器完全相同的功能,但是对应的元素是有序的。A VC is a position binding commitment and can be opened at any position to a unique value with a short proof (sublinear in the length of the vector). The Merkle tree is a VC with logarithmic size openings. Subvector commitments [LM18] are VCs where a subset of the vector positions can be opened in a single short proof (sublinear in the size of the subset).
2018年论文《Batching Techniques for Accumulators with Applications to IOPs and Stateless Blockchains》中提出的VC算法,其subvector openings为constant size,public parameters也为constant size(与vector的长度无关)。若替换IOP中的Merkle-tree为该论文中的VC,则proof size 为 O ( r λ ) O(r\lambda) O(rλ)(其中 r r r为IOP rounds【在特殊的PCP中, r = 1 r=1 r=1】, λ \lambda λ为Merkle tree的security parameter),与oracle queries的次数以及IOP proof oracles的最大长度均无关。
VC的binding特性中额外有position binding的要求:
具体可参见博客Vector Commitments代码实现。
In an IOP the prover sends multiple proof oracles to a verifier. The verifier uses these oracles to query a small subsets of the proof, and afterwards accepts or rejects the proof. If the proof oracle is instantiated with a Merkle tree commitment and the verifier is public coin, then an IOP can be compiled into a non-interactive proof secure in the random oracle model [BCS16]. In particular, this compiler is used to build short non-interactive (zero-knowledge) proof of knowledge with a quasilinear prover and polylogarithmic verifier. Recent practical instantiations of proof systems from IOPs include Ligero [AHIV17], STARKs [BBHR18], and Aurora [BSCR+18].
IOPs采用Merkle trees而不是vector commitment。Merkle trees在该场景下有两个显著的缺陷:
参考资料:
[1] 1993年论文《One-Way Accumulators: A Decentralized Alternative to Digital Signatures (extended abstract)》
[2] 2007年论文《Compact E-Cash from Bounded Accumulator》
[3] 2008年论文《Practical Anonymous Divisible E-Cash From Bounded Accumulators?》
[4] 2002年论文《Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials》
[5] 2005年论文《Accumulators from Bilinear Pairings and Applications to ID-based Ring Signatures and Group Membership Revocation》
[6] 区块链数据存储的“密码学黑科技”:累加器
[7] 2018年论文《Batching Techniques for Accumulators with Applications to IOPs and Stateless Blockchains》
[8] 2007年论文《Universal Accumulators with Efficient Nonmembership Proofs》