准备
通过Charles抓包发现,请求中有一个验签参数signature,每次请求网络都会变化。
请求地址:
http://xxxx.xxxxxx.com/api/article/v2/get_category
参数:
{
"content":{"muid" :"f7e2cb93-5cf3-4b9f-a035-30555c13a167"},
"signature":"6c171c8f2bb05caca19047e3c4a04a7adff9eb3b3973ff3064fa4ab1ba17de64",
"sig_kv":"503_1",
"cten":"p"
}
复制代码
本次调试的目的就是找到signature的生成算法。
使用frida调试
- frida的安装
越狱手机安装Frida:在Cydia中添加源(build.frida.re/),接着在源中找到Frida并安装。
Mac安装frida:需要先有Python环境,使用“pip install frida”安装frida (Frida的详细使用请参考官网:www.frida.re)
- 使用frida监控+[NSURL URLWithString:]的参数和调用堆栈
新建一个文件夹test,终端进入test目录
打印iphone运行的app信息,终端输入命令:
frida-ps -Ua
复制代码
输出如下:
PID Name Identifier
----- ---------- -----------------------------
17521 testApp com.testApp.zodiac
2048 支付宝 com.alipay.iphoneclient
4296 日历 com.apple.mobilecal
3551 相机 com.apple.camera
复制代码
testApp的PID是17521
监控testApp中的"+[NSURL URLWithString:]"方法,终端命令:
frida-trace -U 17521 -m "+[NSURL URLWithString:]"
复制代码
终端输出:
Instrumenting functions...
+[NSURL URLWithString:]: Loaded handler at "/Users/king/Documents/test/__handlers__/__NSURL_URLWithString__.js"
Started tracing 1 function. Press Ctrl+C to stop.
复制代码
在终端界面,按"control+c"退出frida的监控状态。 在test文件夹中的__handlers__文件夹中找到__NSURL_URLWithString__.js文件,主要内容如下:
{
onEnter: function (log, args, state) {
log("+[NSURL URLWithString:" + args[2] + "]");
},
onLeave: function (log, retval, state) {
}
}
复制代码
编辑文件内容,结果如下:
{
onEnter: function (log, args, state) {
log("+[NSURL URLWithString:" + ObjC.Object(args[2]) + "]");
log('\tBacktrace:\n\t' + Thread.backtrace(this.context,Backtracer.ACCURATE).map(DebugSymbol.fromAddress).join('\n\t'));
},
onLeave: function (log, retval, state) {
log("+[NSURL URLWithString:]--return=(" + ObjC.Object(retval) + ")");
}
}
复制代码
ObjC.Object(args[2]) 打印参数的值
log('\tBacktrace:\n\t' + Thread.backtrace(this.context,Backtracer.ACCURATE).map(DebugSymbol.fromAddress).join('\n\t')); 打印调用堆栈
log("+[NSURL URLWithString:]--return=(" + ObjC.Object(retval) + ")"); 打印返回值
这样修改,frida监控NSURL时能打印出参数和堆栈,让我们能很快找到网络请求的位置。
终端再次开启frida监控:
frida-trace -U 17521 -m "+[NSURL URLWithString:]"
复制代码
当请求网络时,会看到终端的打印信息:
4913 ms +[NSURL URLWithString:http:/testApp.ohippo.com/api/article/v2/get_list]
4913 ms Backtrace:
0x100bdfecc testApp!0xb87ecc
0x100be0294 testApp!0xb88294
0x1001dcee4 testApp!0x184ee4
0x1001dd6d4 testApp!0x1856d4
0x100087d18 testApp!0x2fd18
0x100086ef4 testApp!0x2eef4
0x193ce8ec0 UIKit!-[UIViewController loadViewIfRequired]
0x193ce8a9c UIKit!-[UIViewController view]
0x100176df0 testApp!0x11edf0
0x10014dbcc testApp!0xf5bcc
0x193d1e010 UIKit!-[UIApplication sendAction:to:from:forEvent:]
0x193d1df90 UIKit!-[UIControl sendAction:to:forEvent:]
0x193d08504 UIKit!-[UIControl _sendActionsForEvents:withEvent:]
0x193d1d874 UIKit!-[UIControl touchesEnded:withEvent:]
0x193d1d390 UIKit!-[UIWindow _sendTouchesForEvent:]
0x193d18728 UIKit!-[UIWindow sendEvent:]
4916 ms +[NSURL URLWithString:]--return=(http:/testApp.ohippo.com/api/article/v2/get_list)
复制代码
打印的信息很多,这里只截取了一部分有用的打印信息。
使用lldb+debugserver附加当前进程,打印模块偏移地址如下:
[ 0] 0x0000000000058000 /var/containers/Bundle/Application/FA17E6F7-4386-40B1-8B87-0A138169E67F/testApp.app/testApp(0x0000000100058000)
[ 1] 0x0000000101634000 /Users/king/Library/Developer/Xcode/iOS DeviceSupport/10.3.2 (14F89)/Symbols/usr/lib/dyld
...
...
复制代码
计算本次 +[NSURL URLWithString:]方法调用在ida中的地址: 0x100bdfecc - 0x0000000000058000 = 0x100B87ECC
在ida中找到0x100B87ECC位置,可以定位到这个方法:
+[HSServerAPIRequest requestWithURL:dataBody:method:enableEncryption:hashKey:sigKey:]
复制代码
在ida中查看+[HSServerAPIRequest requestWithURL:dataBody:method:enableEncryption:hashKey:sigKey:]的伪代码,可以看到一个+[HSServerAPIRequest parametersWithDataBody:enableEncryption:hashKey:sigKey:]方法
ida中的伪代码:
id __cdecl +[HSServerAPIRequest parametersWithDataBody:enableEncryption:hashKey:sigKey:](HSServerAPIRequest_meta *self, SEL a2, id a3, bool a4, id a5, id a6)
{
v6 = a6;
v7 = a5;
v8 = a4;
v9 = a3;
v10 = self;
v11 = objc_retain(a3, a2);
v13 = objc_retain(v7, v12);
v15 = objc_retain(v6, v14);
v16 = ((id (__cdecl *)(HSUtils_meta *, SEL, id))objc_msgSend)(
(HSUtils_meta *)&OBJC_CLASS___HSUtils,
"jsonStringWithObject:",
v9);
v17 = objc_retainAutoreleasedReturnValue(v16);
objc_release(v11);
if ( v8 )
v18 = objc_msgSend(v10, "encryptedParametersWithDataBodyString:hashKey:sigKey:", v17, v13, v15);
else
v18 = objc_msgSend(v10, "plainParametersWithDataBodyString:hashKey:sigKey:", v17, v13, v15);
v19 = (struct objc_object *)objc_retainAutoreleasedReturnValue(v18);
objc_autorelease(v19);
return v19;
}
复制代码
从伪代码中可以看到"encryptedParametersWithDataBodyString:hashKey:sigKey:"和"plainParametersWithDataBodyString:hashKey:sigKey:"方法,可以跟进去看它们的伪代码具体内容。这个方法的伪代码中看到使用了AES256加密算法,后来发现signature的生成与该方法无关,因此这里不再详述。
再看下面的伪代码:
id __cdecl +[HSServerAPIRequest plainParametersWithDataBodyString:hashKey:sigKey:](HSServerAPIRequest_meta *self, SEL a2, id a3, id a4, id a5)
{
v5 = a5;
v6 = a4;
v7 = self;
v8 = objc_retain(a3, a2);
v10 = objc_retain(v6, v9);
v12 = objc_retain(v5, v11);
v13 = objc_msgSend(v7, "class");
v14 = objc_msgSend(v13, "signedParametersWithContent:hashKey:sigKey:", v8, v10, v12);
v15 = (void *)objc_retainAutoreleasedReturnValue(v14);
objc_release(v12);
objc_release(v10);
objc_release(v8);
objc_msgSend(v15, "setObject:forKey:", CFSTR("p"), CFSTR("cten"));
return (id)objc_autoreleaseReturnValue(v15);
}
复制代码
从上面的伪代码中,看到一个"signedParametersWithContent:hashKey:sigKey:"方法,我们继续跟进。
id __cdecl +[HSServerAPIRequest signedParametersWithContent:hashKey:sigKey:](HSServerAPIRequest_meta *self, SEL a2, id a3, id a4, id a5)
{
v5 = a5;
v6 = a4;
v7 = objc_retain(a3, a2);
v9 = (void *)objc_retain(v6, v8);
v11 = (void *)objc_retain(v5, v10);
v59 = CFSTR("content");
v60 = v7;
v12 = objc_msgSend(&OBJC_CLASS___NSDictionary, "dictionaryWithObjects:forKeys:count:", &v60, &v59, 1LL);
v13 = objc_retainAutoreleasedReturnValue(v12);
v14 = v13;
v15 = objc_msgSend(&OBJC_CLASS___NSMutableDictionary, "dictionaryWithDictionary:", v13);
v16 = (void *)objc_retainAutoreleasedReturnValue(v15);
objc_release(v14);
if ( objc_msgSend(v11, "length") )
{
v18 = (void *)objc_retain(v11, v17);
}
else
{
v19 = (HSConfig *)+[HSConfig sharedInstance](&OBJC_CLASS___HSConfig, "sharedInstance");
v20 = (void *)objc_retainAutoreleasedReturnValue(v19);
v21 = v20;
v22 = objc_msgSend(v20, "data");
v23 = (void *)objc_retainAutoreleasedReturnValue(v22);
v24 = v23;
v25 = objc_msgSend(v23, "valueForKeyPath:", CFSTR("libCommons.Connection.SigKey"));
v18 = (void *)objc_retainAutoreleasedReturnValue(v25);
objc_release(v24);
objc_release(v21);
}
if ( objc_msgSend(v18, "length") )
objc_msgSend(v16, "setObject:forKey:", v18, CFSTR("sig_kv"));
if ( objc_msgSend(v9, "length") )
{
v27 = (void *)objc_retain(v9, v26);
if ( objc_msgSend(v27, "length") != (void *)32 )
{
v28 = objc_msgSend(
&OBJC_CLASS___NSException,
"exceptionWithName:reason:userInfo:",
CFSTR("wrong specified hash key"),
CFSTR("the lengh of hash key is not correct"),
0LL);
LABEL_16:
v55 = (void *)objc_retainAutoreleasedReturnValue(v28);
objc_msgSend(v55, "raise");
objc_release(v55);
v54 = 0LL;
goto LABEL_17;
}
}
else
{
v29 = (HSConfig *)+[HSConfig sharedInstance](&OBJC_CLASS___HSConfig, "sharedInstance");
v30 = (void *)objc_retainAutoreleasedReturnValue(v29);
v31 = v30;
v32 = objc_msgSend(v30, "data");
v33 = (void *)objc_retainAutoreleasedReturnValue(v32);
v34 = v33;
v35 = objc_msgSend(v33, "valueForKeyPath:", CFSTR("libCommons.Connection.HashKey"));
v27 = (void *)objc_retainAutoreleasedReturnValue(v35);
objc_release(v34);
objc_release(v31);
if ( objc_msgSend(v27, "length") != (void *)32 )
{
v28 = objc_msgSend(&OBJC_CLASS___NSException, "exceptionWithName:reason:userInfo:");
goto LABEL_16;
}
}
v36 = sub_100B81304(v27);
v37 = objc_retainAutoreleasedReturnValue(v36);
v38 = objc_msgSend(v16, "objectForKeyedSubscript:", CFSTR("content"));
v39 = objc_retainAutoreleasedReturnValue(v38);
objc_release(v39);
if ( v39 )
{
v57 = v11;
v58 = v7;
v41 = objc_msgSend(v16, "objectForKeyedSubscript:", CFSTR("content"));
v42 = objc_retainAutoreleasedReturnValue(v41);
v44 = objc_retain(v37, v43);
v45 = (void *)objc_retainAutorelease(v44);
v46 = (const char *)objc_msgSend(v45, "cStringUsingEncoding:", 4LL);
objc_release(v45);
v47 = (void *)objc_retainAutorelease(v42);
v48 = (const char *)objc_msgSend(v47, "cStringUsingEncoding:", 4LL);
v49 = strlen(v46);
v50 = strlen(v48);
CCHmac(2LL, v46, v49, v48, v50, v61);
v51 = objc_msgSend(&OBJC_CLASS___NSMutableString, "stringWithCapacity:", 64LL);
v52 = (void *)objc_retainAutoreleasedReturnValue(v51);
v53 = 0LL;
do
objc_msgSend(v52, "appendFormat:", CFSTR("%02x"), (unsigned __int8)v61[v53++]);
while ( v53 != 32 );
objc_msgSend(v16, "setObject:forKey:", v52, CFSTR("signature"));
v7 = v58;
v11 = v57;
}
v54 = objc_retain(v16, v40);
LABEL_17:
if ( __stack_chk_guard == v62 )
result = (id)objc_autoreleaseReturnValue(v54);
return result;
}
复制代码
可以看到 CCHmac(2LL, v46, v49, v48, v50, v61) ,这个是加密算法。
我通过动态调试,确定网络请求,要执行到这个CCHmac处做加密,不妨打印上面的这几个方法的参数和返回值,就能更直观的看到结果。 下面是我还原的部分方法:
+[HSServerAPIRequest requestWithURL:dataBody:method:enableEncryption:hashKey:sigKey:](HSServerAPIRequest_meta *self, SEL, id, id, signed __int64, bool, id, id)
{
//参数:
NSDictionary * pDict = {
"category_id" = 2586351c525f3793b98fa2592111e70e;
direction = old;
muid = "f7e2cb93-5cf3-4b9f-a035-30555c13a167";
"nearest_article_id" = "these-are-the-6-zodiac-signs-who-are-most-likely-to-ghost-you-a16139";
"page_size" = 10;
}
// 调用这个方法
+[HSServerAPIRequest parametersWithDataBody:enableEncryption:hashKey:sigKey:];
{
NSString * pStr = +[HSUtils jsonStringWithObject:pDict];
// = {
"nearest_article_id" : "these-are-the-6-zodiac-signs-who-are-most-likely-to-ghost-you-a16139",
"page_size" : 10,
"muid" : "f7e2cb93-5cf3-4b9f-a035-30555c13a167",
"category_id" : "2586351c525f3793b98fa2592111e70e",
"direction" : "old"
}
if()
{
//执行如下的方法
[HSServerAPIRequest plainParametersWithDataBodyString:arg1=pStr hashKey:arg2=nil sigKey:arg3=nil ];
{
NSDictionary * dict = {content = "{\n \"nearest_article_id\" : \"these-are-the-6-zodiac-signs-who-are-most-likely-to-ghost-you-a16139\",\n \"page_size\" : 10,\n \"muid\" : \"f7e2cb93-5cf3-4b9f-a035-30555c13a167\",\n \"category_id\" : \"2586351c525f3793b98fa2592111e70e\",\n \"direction\" : \"old\"\n}";}
NSMutableDictionary * mutDict = [NSMutableDictionary dictionaryWithDictionary:dict];
id data;
if([arg3 length]==0)
{
data = [[HSConfig sharedInstance] data];
NSString * sigKey = [data valueForKeyPath:@"libCommons.Connection.SigKey"];
// = @"503_1"
}
int count = [sigKey length];// = 5
if(count!=0)
{
[mutDict setObject:sigKey forKey:@"sig_kv"];
}
if([arg2 length]==0)
{
NSString * hashKey = [data valueForKeyPath:@"libCommons.Connection.HashKey"];
// = "E56j-4$X=XzA7H#H4]p2e@)V1=Rg6qS="
if([hashKey length] == 32)// = 32
{
NSString * hashKey_2 = sub_100B81304(hashKey);// = "HJdq=ZT?l?yp1)V)ZbRYw#E/il;&d,Nl"
// x22 = mutDict
NSString * content = [mutDict objectForKeyedSubscript:@"content"];
// x19 = {"nearest_article_id" : "precise-ways-to-put-yourself-out-there-to-meet-mr-right-based-on-zodiac-signs-a16206","page_size" : 10,"muid" : "f7e2cb93-5cf3-4b9f-a035-30555c13a167","category_id" : "2586351c525f3793b98fa2592111e70e","direction" : "old"}
if(content)
{
char * hashKey_3 =[hashKey_2 cStringUsingEncoding:4];
char * content_3 = [content cStringUsingEncoding:4];// = x19
int length_hashKey_3 = strlen(hashKey_3);// = x27 = 32
int length_content_3 = strlen(content_3);// = x4 = 263
_CCHmac(2,hashKey_3,length_hashKey_3,content_3,length_content_3);
v51 = [NSMutableString stringWithCapacity:64LL];// = v52
v53 = 0LL;
do
[v52 appendFormat:@"%02x", (unsigned __int8)v61[v53++]);
while ( v53 != 32 );
[v16 setObject:v52 forKey:@"signature"];
}
else
{
}
}
else
{
return;
}
}
else
{
}
}
}
}
}
复制代码
上面的伪代码中,能看到加密的参数是 hashKey_3 和 content_3,v61用于保存加密后的结果,最终得到v52就是最终的signature的值。
分析:CCHmac是一种常见的加密算法,各种编程语言都有具体的实现,因此很容易用还原这个加密算法,更好的方式是直接用。在python中可以直接调用这个加密算法,我验证过,是完全OK的。
总结
本文重点在用Frida监控方法调用,找到关键函数,并在ida中通过静态分析,查看伪代码找到加密算法的蛛丝马迹,并结合动态调试,打印出算法的参数和返回值,最终还原出清晰的逻辑。
补充
感谢您 帮忙在右上角 点个“⭐️”,非常感谢。
github地址:github.com/luoyanbei/r…
可关注公众号:逆向APP,获取本次逆向app的素材文件,方便练习。