一、函数简介
1、calcHist—计算图像直方图
函数原型:calcHist(images, channels, mask, histSize, ranges, hist=None, accumulate=None)
images:图像矩阵,例如:[image]
channels:通道数,例如:0
mask:掩膜,一般为:None
histSize:直方图大小,一般等于灰度级数
ranges:横轴范围
2、equalizeHist—直方图均衡化
函数原型: equalizeHist(src, dst=None)
src:图像矩阵
dst:默认即可
二、实例演练
1、灰度图像直方图
代码如下:
#encoding:utf-8
#
#灰度图像直方图
#
from matplotlib import pyplot as plt
import cv2
image = cv2.imread("H:\\img\\lena.jpg")
cv2.imshow("Original",image)
#图像直方图
hist = cv2.calcHist([image],[0],None,[256],[0,256])
plt.figure()#新建一个图像
plt.title("Grayscale Histogram")#图像的标题
plt.xlabel("Bins")#X轴标签
plt.ylabel("# of Pixels")#Y轴标签
plt.plot(hist)#画图
plt.xlim([0,256])#设置x坐标轴范围
plt.show()#显示图像
2、彩色图像直方图
代码如下:
#encoding:utf-8
#
#彩色图像直方图
#
from matplotlib import pyplot as plt
import numpy as np
import cv2
image = cv2.imread("H:\\img\\lena.jpg")
cv2.imshow("Original",image)
#cv2.waitKey(0)
chans = cv2.split(image)
colors = ("b","g","r")
plt.figure()
plt.title("Flattened Color Histogram")
plt.xlabel("Bins")
plt.ylabel("# of Pixels")
for (chan,color) in zip(chans,colors):
hist = cv2.calcHist([chan],[0],None,[256],[0,256])
plt.plot(hist,color = color)
plt.xlim([0,256])
plt.show()
3、直方图均衡化
代码如下:
#encoding:utf-8
#
#图像直方图均衡化
#
import numpy as np
import cv2
image = cv2.imread("H:\\img\\lena.jpg",0)#读取灰度图像
cv2.imshow("Original",image)
cv2.waitKey(0)
eq = cv2.equalizeHist(image)#灰度图像直方图均衡化
cv2.imshow("Histogram Equalization", np.hstack([image, eq]))
cv2.waitKey(0)