参考博客:http://blog.chinaunix.net/uid-18921523-id-165078.html
U-BOOT是一个LINUX下的工程,在编译之前必须已经安装对应体系结构的交叉编译环境,
这里只针对ARM,编译器系列软件为arm-linux-*。
U-BOOT的下载地址: http://sourceforge.net/projects/u-boot
下载的是1.1.6版本。
这些目录中所要存放的文件有其规则,可以分为3类。
第1类目录: 与处理器体系结构或者开发板硬件直接相关;
第2类目录: 是一些通用的函数或者驱动程序;
第3类目录: 是u-boot的应用程序、工具或者文档。
目 录 特 性 解 释 说 明
board 平台依赖 存放电路板相关的目录文件,
例如:RPXlite(mpc8xx)、
smdk2410(arm920t)、
sc520_cdp(x86) 等目录;
cpu 平台依赖 存放CPU相关的目录文件
例如:mpc8xx、ppc4xx、
arm720t、arm920t、 xscale、i386等目录;
lib_ppc 平台依赖 存放对PowerPC体系结构通用的文件,
主要用于实现PowerPC平台通用的函数;
lib_arm 平台依赖 存放对ARM体系结构通用的文件,
主要用于实现ARM平台通用的函数;
lib_i386 平台依赖 存放对X86体系结构通用的文件,
主要用于实现X86平台通用的函数;
include 通用 头文件和开发板配置文件,
所有开发板的配置文件都在configs目录下;
common 通用 通用的多功能函数实现
lib_generic 通用 通用库函数的实现
net 通用 存放网络的程序
fs 通用 存放文件系统的程序
post 通用 存放上电自检程序
drivers 通用 通用的设备驱动程序,主要有以太网接口的驱动
disk 通用 硬盘接口程序
rtc 通用 RTC的驱动程序
dtt 通用 数字温度测量器或者传感器的驱动
examples 应用例程 一些独立运行的应用程序的例子,例如helloworld
tools 工具 存放制作S-Record或者u-boot格式的映像等工具,
例如mkimage
doc 文档 开发使用文档
可是对于特定的开发板,配置编译过程只需要其中部分程序。
这里具体以S3C2410 & arm920t处理器为例,
具体分析S3C2410处理器和开发板所依赖的程序,以及u-boot的通用函数和工具。
以smdk_2410板为例,编译的过程分两部:
# make smdk2410_config
# make
要了解一个LINUX工程的结构必须看懂Makefile,
尤其是顶层的,没办法,UNIX世界就是这么无奈,什么东西都用文档去管理、配置。
首先在这方面我是个新手,时间所限只粗浅地看了一些Makefile规则。
以smdk_2410为例,顺序分析Makefile大致的流程及结构如下:
目标文件存放目录BUILD_DIR可以通过make O=dir 指定。
如果没有指定,则设定为源码顶层目录。一般编译的时候不指定输出目录,则BUILD_DIR为空。
其它目录变量定义如下:
#OBJTREE和LNDIR为存放生成文件的目录,TOPDIR与SRCTREE为源码所在目录:
OBJTREE := $(if $(BUILD_DIR),$(BUILD_DIR),$(CURDIR))
SRCTREE := $(CURDIR)
TOPDIR := $(SRCTREE)
LNDIR := $(OBJTREE)
export TOPDIR SRCTREE OBJTREE
这个变量指向一个脚本,即顶层目录的mkconfig。
MKCONFIG := $(SRCTREE)/mkconfig
export MKCONFIG
在编译U-BOOT之前,先要执行
# make smdk2410_config
smdk2410_config是Makefile的一个目标,定义如下:
smdk2410_config : unconfig
@$(MKCONFIG) $(@:_config=) arm arm920t smdk2410 NULL s3c24x0
unconfig::
@rm -f $(obj)include/config.h $(obj)include/config.mk \
$(obj)board/*/config.tmp $(obj)board/*/*/config.tmp
显然,执行# make smdk2410_config时,先执行unconfig目标,
注意不指定输出目标时,obj,src变量均为空,
unconfig下面的命令清理上一次执行make *_config时生成的头文件和makefile的包含文件。
主要是 include/config.h 和 include/config.mk 文件。
然后才执行命令
@$(MKCONFIG) $(@:_config=) arm arm920t smdk2410 NULL s3c24x0
对于smdk2410_config而言,mkconfig主要做三件事:
在include文件夹下建立相应的文件(夹)软连接,
#如果是ARM体系将执行以下操作:
#ln -s asm-arm asm
#ln -s arch-s3c24x0 asm-arm/arch
#ln -s proc-armv asm-arm/proc
生成 Makefile 包含文件 include/config.mk,内容很简单,定义了四个变量:
ARCH = arm
CPU = arm920t
BOARD = smdk2410
SOC = s3c24x0
生成 include/config.h 头文件,只有一行:
/* Automatically generated - do not edit */
#include "config/smdk2410.h"
mkconfig脚本文件的执行至此结束,继续分析Makefile剩下部分。
其实也就相当于在Makefile里定义了上面四个变量而已。
ifeq ($(ARCH),arm)#这里根据ARCH变量,指定编译器前缀。
CROSS_COMPILE = arm-linux-
endif
# load other configuration
include $(TOPDIR)/config.mk
分析 config.mk 的内容:
ifdef ARCH
sinclude $(TOPDIR)/$(ARCH)_config.mk # include architecture dependend rules
endif
PLATFORM_CPPFLAGS += -DCONFIG_ARM -D__ARM__
2,定义编译时对齐,浮点等选项:
ifdef CPU
sinclude $(TOPDIR)/cpu/$(CPU)/config.mk # include CPU specific rules
endif
ifdef SOC #没有这个文件
sinclude $(TOPDIR)/cpu/$(CPU)/$(SOC)/config.mk # include SoC specific rules
endif
3,指定开发板代码所在目录
ifdef VENDOR
BOARDDIR = $(VENDOR)/$(BOARD)
eles
BOARDDIR = $(BOARD)
4,指定特定板子的镜像连接时的内存基地址,重要!:TEXT_BASE = 0x33D00000
ifdef BOARD
sinclude $(TOPDIR)/board/$(BOARDDIR)/config.mk # include board specific rules
endif
# Include the make variables (CC, etc...)
#
AS = $(CROSS_COMPILE)as
LD = $(CROSS_COMPILE)ld
CC = $(CROSS_COMPILE)gcc
CPP = $(CC) -E
AR = $(CROSS_COMPILE)ar
NM = $(CROSS_COMPILE)nm
STRIP = $(CROSS_COMPILE)strip
OBJCOPY = $(CROSS_COMPILE)objcopy
OBJDUMP = $(CROSS_COMPILE)objdump
RANLIB = $(CROSS_COMPILE)RANLIB
6,定义AR选项ARFLAGS
调试选项DBGFLAGS,优化选项OPTFLAGS:
AFLAGS := $(AFLAGS_DEBUG) -D__ASSEMBLY__ $(CPPFLAGS)
7,预处理选项CPPFLAGS
C编译器选项CFLAGS,连接选项LDFLAGS:
LDFLAGS += -Bstatic -T $(LDSCRIPT) -Ttext $(TEXT_BASE) $(PLATFORM_LDFLAGS)
其中 LDSCRIPT := $(TOPDIR)/board/$(BOARDDIR)/u-boot.lds 再 BOARDDIR = $(VENDOR)/$(BOARD) 即是
u-boot.lds 为连接脚本文件.
$(obj)%.s: %.S
$(CPP) $(AFLAGS) -o $@ $<
$(obj)%.o: %.S
$(CC) $(AFLAGS) -c -o $@ $<
$(obj)%.o: %.c
$(CC) $(CFLAGS) -c -o $@ $<
回到顶层makefile文件:
OBJS = cpu/$(CPU)/start.o # 顺序很重要,start.o必须放第一位
LIBS = lib_generic/libgeneric.a
LIBS += board/$(BOARDDIR)/lib$(BOARD).a
LIBS += cpu/$(CPU)/lib$(CPU).a
ifdef SOC
LIBS += cpu/$(CPU)/$(SOC)/lib$(SOC).a
endif
LIBS += lib_$(ARCH)/lib$(ARCH).a
LIBS += fs/cramfs/libcramfs.a fs/fat/libfat.a fs/fdos/libfdos.a fs/jffs2/libjffs2.a \
fs/reiserfs/libreiserfs.a fs/ext2/libext2fs.a
LIBS += net/libnet.a
LIBS += disk/libdisk.a
LIBS += rtc/librtc.a
LIBS += dtt/libdtt.a
LIBS += drivers/libdrivers.a
LIBS += drivers/nand/libnand.a
LIBS += drivers/nand_legacy/libnand_legacy.a
LIBS += drivers/sk98lin/libsk98lin.a
LIBS += post/libpost.a post/cpu/libcpu.a
LIBS += common/libcommon.a
LIBS += $(BOARDLIBS)
LIBS := $(addprefix $(obj),$(LIBS))
.PHONY : $(LIBS)
根据上面的 include/config.mk 文件定义的 ARCH、CPU、BOARD、SOC 这些变量。
硬件平台依赖的目录文件可以根据这些定义来确定。
SMDK2410平台相关目录及对应生成的库文件如下:
board/smdk2410/ :库文件board/smdk2410/libsmdk2410.a
cpu/arm920t/ :库文件cpu/arm920t/libarm920t.a
cpu/arm920t/s3c24x0/ :库文件cpu/arm920t/s3c24x0/libs3c24x0.a
lib_arm/ :库文件lib_arm/libarm.a
include/asm-arm/ :下面两个是头文件。
include/configs/smdk2410.h
ALL = $(obj)u-boot.srec $(obj)u-boot.bin $(obj)System.map $(U_BOOT_NAND)
all: $(ALL)
$(obj)u-boot.hex: $(obj)u-boot
$(OBJCOPY) ${OBJCFLAGS} -O ihex $< $@
$(obj)u-boot.srec: $(obj)u-boot
$(OBJCOPY) ${OBJCFLAGS} -O srec $< $@
$(obj)u-boot.bin: $(obj)u-boot
$(OBJCOPY) ${OBJCFLAGS} -O binary $< $@
#这里生成的是U-boot 的ELF文件镜像
$(obj)u-boot: depend version $(SUBDIRS) $(OBJS) $(LIBS) $(LDSCRIPT)
UNDEF_SYM=`$(OBJDUMP) -x $(LIBS) |sed -n -e '''''''''''''''''''''''''''''''
cd $(LNDIR) && $(LD) $(LDFLAGS) $$UNDEF_SYM $(__OBJS) \
--start-group $(__LIBS) --end-group $(PLATFORM_LIBS) \
-Map u-boot.map -o u-boot
主要是生成 *.o 文件然后执行 AR 生成对应的库文件。如 lib_generic 文件夹 Makefile:
LIB = $(obj)libgeneric.a
COBJS = bzlib.o bzlib_crctable.o bzlib_decompress.o \
bzlib_randtable.o bzlib_huffman.o \
crc32.o ctype.o display_options.o ldiv.o \
string.o vsprintf.o zlib.o
SRCS := $(COBJS:.o=.c)
OBJS := $(addprefix $(obj),$(COBJS))
$(LIB): $(obj).depend $(OBJS) #项层Makefile执行make libgeneric.a
$(AR) $(ARFLAGS) $@ $(OBJS)
生成各个子目录的.depend文件,.depend 列出每个目标文件的依赖文件。
生成方法,调用每个子目录的 make _depend 。
depend dep:
for dir in $(SUBDIRS) ; do $(MAKE) -C $$dir _depend ; done
生成版本信息到版本文件VERSION_FILE中。
version:
@echo -n "#define U_BOOT_VERSION \"U-Boot " > $(VERSION_FILE); \
echo -n "$(U_BOOT_VERSION)" >> $(VERSION_FILE); \
echo -n $(shell $(CONFIG_SHELL) $(TOPDIR)/tools/setlocalversion \
$(TOPDIR)) >> $(VERSION_FILE); \
echo "\"" >> $(VERSION_FILE)
执行tools ,examples ,post,post\cpu 子目录下面的make文件。
SUBDIRS = tools \
examples \
post \
post/cpu
.PHONY : $(SUBDIRS)
$(SUBDIRS):
$(MAKE) -C $@ all
即cpu/start.o
$(OBJS):
$(MAKE) -C cpu/$(CPU) $(if $(REMOTE_BUILD),$@,$(notdir $@))
这个目标太多,都是每个子目录的库文件*.a ,通过执行相应子目录下的make来完成:
$(LIBS):
$(MAKE) -C $(dir $(subst $(obj),,$@))
LDSCRIPT := $(TOPDIR)/board/$(BOARDDIR)/u-boot.lds
LDFLAGS += -Bstatic -T $(LDSCRIPT) -Ttext $(TEXT_BASE) $(PLATFORM_LDFLAGS)
对于smdk2410,LDSCRIPT即连接脚本文件是board/smdk2410/u-boot.lds,定义了连接时各个目标文件是如何组织的。
内容如下:
OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")
/*OUTPUT_FORMAT("elf32-arm", "elf32-arm", "elf32-arm")*/
OUTPUT_ARCH(arm)
ENTRY(_start)
SECTIONS
{
. = 0x00000000;
. = ALIGN(4);
.text :/*.text的基地址由LDFLAGS中-Ttext $(TEXT_BASE)指定*/
{ /*smdk2410指定的基地址为0x33f80000*/
cpu/arm920t/start.o (.text) /*start.o为首*/
*(.text)
}
. = ALIGN(4);
.rodata : { *(.rodata) }
. = ALIGN(4);
.data : { *(.data) }
. = ALIGN(4);
.got : { *(.got) }
. = .;
__u_boot_cmd_start = .;
.u_boot_cmd : { *(.u_boot_cmd) }
__u_boot_cmd_end = .;
. = ALIGN(4);
__bss_start = .;
.bss : { *(.bss) }
_end = .;
}
cd $(LNDIR) && $(LD) $(LDFLAGS) $$UNDEF_SYM $(__OBJS) \
--start-group $(__LIBS) --end-group $(PLATFORM_LIBS) \
-Map u-boot.map -o u-boot
其实就是把 start.o 和各个子目录 makefile 生成的库文件按照 LDFLAGS 连接在一起,
生成ELF文件 u-boot 和连接时内存分配图文件 u-boot.map。
u-boot.map 表示的是地址标号到该标号表示的地址的一个映射关系。
整个 Makefile 剩下的内容全部是各种不同的开发板的 *_config: 目标的定义了。
工程的编译流程也就是通过执行执行一个 make *_config 传入ARCH,CPU,BOARD,SOC参数,
mkconfig 根据参数将 include 头文件夹相应的头文件夹连接好,生成 config.h 。
然后执行 make 分别调用各子目录的 makefile 生成所有的obj文件和obj库文件*.a. 最后连接所有目标文件,生成镜像。
不同格式的镜像都是调用相应工具由 elf 镜像直接或者间接生成的。
剩下的工作就是分析U-Boot源代码了。
1、 首先编译cpu/$(CPU)start.S
2、 然后,对于平台相关的每个目录,每个通用的目录都使用他们各自得Makefile生成相应得库
3、 将1、2步骤生成的.0.a文件按照board/$(BOARDDIR)/config.mk文件中指定的代码段起始地址、board/$(BOARDDIR)/u-boot.lds链接脚本进行连接。
4、 第3步得到的是ELF格式的uboot,后面的Makefile还会将它转换为二进制格式(bin格式)、s-record格式。