次短路问题总结

学到现在就做过两道次短路的题。

A*这辈子都不可能学的。两个不同的方法分别是dist2法和删边法。

dist2

做法就是类似于dist数组那样,再弄一个dist2数组,代表次短路径。

更新的话就要比较多的判断关系,关键的最短路算法判断是这样的:

void dijkstra(int s, int t)
{
    memset(dist, 0x3f, sizeof dist);
    memset(dist2, 0x3f, sizeof dist2);// 0x7f???
    std::priority_queue heap;
    dist[s] = 0; heap.push((Heapnodes){dist[s], s});
    while(!heap.empty())
    {
        Heapnodes x = heap.top(); heap.pop();
        int d = x.d, u = x.u;
        if(d != dist[u]) continue;
        for(int i = head[u]; i; i = e[i].next)
        {
            int v = e[i].to;
            if(dist[u] + e[i].weight < dist[v])
            {
                dist2[v] = dist[v];
                dist[v] = dist[u] + e[i].weight;
                heap.push((Heapnodes){dist[v], v});
            }
            if(dist[u] + e[i].weight > dist[v] && dist[u] + e[i].weight < dist2[v])
            {
                dist2[v] = dist[u] + e[i].weight;
                heap.push((Heapnodes){dist[v], v});
            }
            if(dist2[u] + e[i].weight < dist2[v])
            {
                dist2[v] = dist2[u] + e[i].weight;
                //heap.push((Heapnodes){dist[v], v});
            }
        }
    }
}

其实也不知道对不对,因为Rodeblock那道题数据太水了。我觉得大概率是不对的。

删边法

求次短路我更倾向于第二种方法。

思路也比较清晰:先求最短路,然后再枚举最短路上的每一条路径,删去后再跑最短路,这些最短路的最大值就是次短路。

做法除了要写两个最短路以外没有什么大问题。要枚举路径就多一个pre数组而已,删边就记录一下下标,然后枚举边的时候判断是否合法即可。

这是P1491的代码:

#include
#include
#include
#include
#include
const int maxn = 205;
const double INF = 1e15;
struct Edges
{
    int next, to; double weight;
} e[100005];
int head[maxn], tot;

double x[maxn], y[maxn];
int n, m;

bool vis[maxn];
double dist[maxn];

int pre[maxn];

double dis(int u, int v)
{
    return sqrt((x[u] - x[v]) * (x[u] - x[v]) + (y[u] - y[v]) * (y[u] - y[v]));
}
void link(int u, int v, double w)
{
    e[++tot] = (Edges){head[u], v, w};
    head[u] = tot;
}
void spfa()
{
    std::queue q;
    for(int i = 1; i <= n; i++) dist[i] = INF;
    dist[1] = 0; q.push(1); vis[1] = true;
    while(!q.empty())
    {
        int u = q.front(); q.pop(); vis[u] = false;
        for(int i = head[u]; i; i = e[i].next)
        {
            int v = e[i].to;
            if(dist[u] + e[i].weight < dist[v])
            {
                dist[v] = dist[u] + e[i].weight;
                // tag
                pre[v] = u;
                if(!vis[v])
                {
                    q.push(v); vis[v] = true;
                }
            }
        }
    }
}
void spfa2(int nou, int nov)
{
    memset(vis, false, sizeof vis);
    for(int i = 1; i <= n; i++) dist[i] = INF;
    std::queue q;
    dist[1] = 0; q.push(1); vis[1] = true;
    while(!q.empty())
    {
        int u = q.front(); q.pop(); vis[u] = false;
        for(int i = head[u]; i; i = e[i].next)
        {
            int v = e[i].to;
            if((u == nou && v == nov) || (u == nov && v == nou)) continue;
            if(dist[u] + e[i].weight < dist[v])
            {
                dist[v] = dist[u] + e[i].weight;
                if(!vis[v])
                {
                    q.push(v); vis[v] = true;
                }
            }
        }
    }
}
int main()
{
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i++)
    {
        scanf("%lf%lf", &x[i], &y[i]);
    }
    while(m--)
    {
        int u, v; scanf("%d%d", &u, &v);
        link(u, v, dis(u, v)); link(v, u, dis(v, u));
    }
    spfa();
    double ans = INF, mem = dist[n];
    for(int i = n; i != 1; i = pre[i])
    {
        spfa2(i, pre[i]);
        ans = std::min(ans, dist[n]);
    }
    //printf("%.2lf\n", mem);
    if(ans == INF) printf("-1\n");
    printf("%.2lf\n", ans);
    return 0;
}

转载于:https://www.cnblogs.com/Garen-Wang/p/10228286.html

你可能感兴趣的:(次短路问题总结)