- 前端存储后端响应数据方式详解
z2637305611
前端
在前端存储后端响应数据是常见需求,可以优化性能(减少重复请求)、支持离线访问或提升用户体验。以下是超详细的实现方式和注意事项:一、前端存储后端数据的核心步骤1.获取后端数据使用fetch或axios发送请求://使用fetchfetch('https://api.example.com/data').then(response=>response.json()).then(data=>saveDa
- innovus 命令每日精要 | setAnalysisMode:深度解析与高效配置指南
数字后端物理设计知识库
innovus命令每日精要人工智能后端性能优化
在芯片设计领域,时序分析是确保设计可靠性和性能的关键环节,而Innovus作为业内领先的实现工具,其命令的精准运用直接决定了时序分析的效率与质量。今天,让我们一同深入探究setAnalysisMode这一核心命令,解锁其隐藏的潜力,为芯片设计之旅保驾护航。setAnalysisMode是Innovus工具中用于配置全局时序分析模式的核心命令,其作用涵盖分析类型设置、时钟传播控制、检查方式定义及优化
- CUDA内核调优工具ncu的详细使用教程
东北豆子哥
CUDA数值计算/数值优化linux高性能计算
NVIDIANsightCompute(ncu)是一款用于CUDA内核性能分析的工具,帮助开发者优化CUDA程序。以下是详细的使用教程和示例说明。1.安装NVIDIANsightCompute确保已安装CUDAToolkit和NVIDIA驱动,然后从NVIDIA官网下载并安装NsightCompute。2.基本使用2.1启动ncu通过命令行启动ncu,基本语法如下:ncu[options][app
- 跨域视线估计的协同对比学习(重点针对局部对比学习解释)
阳光明媚大男孩
学习人工智能
跨域视线估计的协同对比学习1.问题表述在视线估计领域中,跨域问题是指当训练数据和测试数据来自不同的领域(如不同的个体、光照条件、拍摄设备等)时,模型性能会显著下降。这种性能下降主要是因为不同领域之间的差异导致模型难以泛化。为了解决这一问题,新方法(CrossGazeGeneralization,CGaG)旨在通过特征解耦的方式减少领域差异对视线估计的影响,从而提高模型在跨域情况下的准确性和稳定性。
- 基于GPT架构的视频生成工具(VideoGPT)
deepdata_cn
视频生成音视频视频生成
VideoGPT是基于GPT架构的视频生成工具,支持从文本生成视频。最初,研究人员尝试将自然语言处理中的GPT架构思想引入视频处理领域,开始探索如何利用其强大的语言理解和生成能力来处理视频的时空信息。模型改进与创新:如VideoGPT+模型结合了先进的图像编码器和视频编码器,克服了传统方法在处理视频时的局限,在捕捉丰富空间细节和理解复杂时间动态上展现出卓越性能。iVideoGPT采用新颖的压缩to
- 使用OpenResty(基于Nginx和Lua)优化Web服务性能
随风九天
部署运维java性能九阴白骨爪openrestynginxlua
引言1.1OpenResty简介OpenResty是一个基于Nginx和Lua的高性能Web应用平台。它通过将Lua脚本嵌入到Nginx中,提供了强大的动态处理能力,适用于构建高性能的Web服务、API网关、动态内容生成等场景。1.2Nginx与Lua结合的优势高性能:Nginx本身就是一个高性能的HTTP和反向代理服务器,而Lua的嵌入使得动态处理能力大大增强。低资源消耗:Lua脚本的执行效率高
- Claude3.5到底强大在哪?
草莓屁屁我不吃
人工智能chatgpt
Claude3.5是Anthropic公司最新推出的Claude3.5Sonnet模型以其卓越的性能和广泛的应用前景,成为了业界关注的焦点。作为Claude3系列中的最新成员,Claude3.5Sonnet不仅在速度、成本、智能表现等多个方面实现了质的飞跃,还在视觉理解、代码生成、复杂指令执行等领域树立了新的行业标准,其技术优势在多个方面表现突出。文章将从技术角度详细分析Claude3.5的核心特
- 面试视角深度解析:索引冗余 vs 覆盖索引 vs 全表扫描的终极抉择
dblens 数据库管理和开发工具
mysql面试java数据库
一、核心概念解析(面试破题关键)1.索引冗余(IndexRedundancy)本质:同一字段存在多个重复或包含关系的索引典型场景重复索引:INDEX(a)和INDEX(a)前缀冗余:已有INDEX(a,b,c)时再建INDEX(a,b)隐式覆盖:主键索引与唯一索引的列重叠面试考点如何通过SHOWINDEX识别冗余索引冗余索引对写性能的影响公式:写入耗时=基础耗时×(索引数+1)存储成本计算:单个索
- 深入解析两大AI模型的架构与功能
草莓屁屁我不吃
人工智能chatgpt
在人工智能(AI)领域,自然语言处理(NLP)一直是研究的热点之一。随着技术的不断进步,我们见证了从简单的聊天机器人到复杂语言模型的演变。其中,Google的Gemini和OpenAI的ChatGPT作为两大代表性模型,各自在技术和应用上展现出了卓越的性能。本文将详细解析Gemini和ChatGPT的系统架构、功能特性及其背后的技术原理。Gemini模型详解技术背景与架构Gemini,顾名思义,意
- Vue 3 vs Vue 2:深入解析从性能优化到源码层面的进化
银之夏雪
vue.js性能优化前端
Vue.js是当今前端开发中最受欢迎的框架之一。随着Vue3的发布,它在性能优化、开发体验、响应式系统、构建工具和热更新等多个方面都带来了巨大提升。本文将深入剖析Vue3的进化,包括其源码实现方面的优化,如diff算法、静态标记、编译优化,以及Vue3在热更新、构建工具上的改进。1.性能提升:底层优化的革命1.1响应式系统的改进:从Object.defineProperty到ProxyVue2的响
- Feign性能调优
௸྄ིོུ倾心ღ᭄ᝰꫛꫀꪝ
Feign性能调优测试demo地址:https://gitee.com/bjrts/spring-cloud-study-demo/tree/feign/父项目pom4.0.0com.baojiarenfeignpom1.0-SNAPSHOTeureka-servereureka-server02service-providerservice-provider02service-consumers
- Android Dagger2 框架作用域管理模块深度剖析(五)
&有梦想的咸鱼&
AndroidDagger2原理android
一、引言在Android开发中,依赖注入(DependencyInjection,简称DI)是一种重要的设计模式,它能有效降低代码之间的耦合度,提升代码的可测试性和可维护性。Dagger2作为一款强大的依赖注入框架,凭借其在编译时生成依赖注入代码的特性,避免了运行时反射带来的性能开销。而作用域管理模块是Dagger2中极为关键的一部分,它能精准控制依赖对象的生命周期,确保在特定作用域内依赖对象的唯
- Feign性能优化以及最佳实践
南川北渔
SpringCloud性能优化okhttp
1.Feign性能优化Feign底层发起http请求,依赖于其它的框架。其底层客户端实现包括:•URLConnection:默认实现,不支持连接池•ApacheHttpClient:支持连接池•OKHttp:支持连接池优化1:因此提高Feign的性能主要手段就是使用**连接池**代替默认的URLConnection。优化2:日志的级别,根据项目测试,确定最大连接数和单个路径的最大连接数,日志尽量用
- java实现卷积神经网络CNN(附带源码)
Katie。
Java实战项目java
Java实现卷积神经网络(CNN)项目详解目录项目概述1.1项目背景与意义1.2什么是卷积神经网络(CNN)1.3卷积神经网络的应用场景相关知识与理论基础2.1神经网络与深度学习概述2.2卷积操作与卷积层原理2.3激活函数与池化层2.4全连接层与损失函数2.5前向传播、反向传播与梯度下降项目需求与分析3.1项目目标3.2功能需求分析3.3性能与扩展性要求3.4异常处理与鲁棒性考虑系统设计与实现思路
- 深度解析前端面试八股文:核心知识点与高效应对策略
赵大仁
前端面试职场和发展
深度解析前端面试八股文:核心知识点与高效应对策略1.引言前端面试是每位开发者迈向职业进阶的重要环节,涉及HTML、CSS、JavaScript、性能优化、浏览器原理、网络、安全、框架(Vue/React)等核心知识点。本文不仅会覆盖前端面试的高频八股文,还会结合生动的案例,让你在面试时能够脱离死记硬背,从理解中突破!2.HTML&CSS高频考点2.1HTML语义化问题:什么是HTML语义化?为什么
- 展望 AIGC 前景:通义万相 2.1 与蓝耘智算平台共筑 AI 生产力高地
accurater
AIGC人工智能神经网络深度学习
喜欢可以到主页订阅专栏引言人工智能生成内容(AIGC)技术正在重塑内容创作、影视制作、广告设计等行业的底层逻辑。作为该领域的革命性技术代表,通义万相2.1凭借其开源特性、多模态生成能力和技术突破,成为全球视频生成模型的标杆。而蓝耘智算平台则通过高性能算力支持与分布式架构优化,为AIGC技术的规模化应用提供了基础设施保障。两者的协同不仅推动了AI生产力的跃迁,更开启了从技术研发到商业落地的全链条创新
- 文心一言提前免费,高性能大模型全面入局该咋看?
江瀚视野
人工智能机器人
3月16日,百度正式发布文心大模型4.5及文心大模型X1,在文心一言官网即可免费使用。这件事我们该怎么看?首先,从技术创新的角度来看,百度文心大模型4.5和X1的发布展示了百度在AI大模型领域的显著进步。文心大模型4.5作为首个原生多模态大模型,在多模态理解、文本和逻辑推理能力上的显著提升,使其在多项测试中表现优于GPT4.5,这体现了百度在AI技术研发上的深厚积累。同时,文心大模型X1作为深度思
- 信号传输与通信:光纤通信中的信号处理_(15).高级光信号处理技术
kkchenkx
信号处理技术仿真模拟信号处理网络数据库
高级光信号处理技术1.光纤通信中的非线性效应及其补偿1.1光纤非线性效应的原理光纤通信系统中,非线性效应是限制系统性能的关键因素之一。非线性效应主要包括自相位调制(SPM)、交叉相位调制(XPM)、四波混频(FWM)和受激拉曼散射(SRS)等。这些效应在高功率、长距离传输中尤为显著,会导致信号的相位和频率失真,进而影响信号的传输质量。1.1.1自相位调制(SPM)自相位调制是指光波在光纤中传播时,
- python代码重构技巧_Python代码重构指南,老师Bryan Beecham完结
weixin_39916479
python代码重构技巧
本套课程由BryanBeecham,全球知名敏捷开发教练主讲的:Python代码重构指南。重构是软件改进的核心,它使软件拥有更好的结构和性能,也使代码更易于理解、修改和扩展。尽管重构并不是新事物,但是软件开发人员仍然会苦恼于如何正确地进行重构。随着敏捷运动的发展,DevOps之类的概念不断追求高质量和精心设计的代码,以实现更快的部署和反馈。不过,现有的很多关于重构的教程都基于Java语言,关于Py
- Spring Boot 多级缓存实战:基于 Redis+Redisson 构建高并发解决方案
Isaac_Gao
缓存springbootredis
SpringBoot多级缓存实战:基于Redis+Redisson构建高并发解决方案本文适合人群:中高级Java开发工程师、系统架构师、对高并发场景优化感兴趣的技术人员一、为什么需要多级缓存?在百万级并发的电商系统中,我们曾遇到这样的性能瓶颈:本地缓存导致各节点数据不一致单纯依赖Redis造成带宽瓶颈缓存雪崩导致DB被打挂多级缓存架构通过结合本地缓存与分布式缓存的优势,实现了:热点数据纳秒级访问分
- Dubbo、SpringCloud框架学习
种豆走天下
dubbospringcloud学习
学习Dubbo和SpringCloud框架是微服务架构的一个重要部分。这两个框架在分布式系统中起着重要的作用,分别是阿里巴巴和Spring团队开发的。下面我将为你提供一些基础知识和学习路线,帮助你更好地理解和掌握这两个框架。1.Dubbo框架学习1.1什么是DubboDubbo是阿里巴巴开源的一款高性能的微服务框架。它提供了RPC(远程过程调用)、服务注册与发现、负载均衡、容错、监控等功能。Dub
- Java代码优化提升系统性能
种豆走天下
java开发语言
优化可以涉及许多方面,例如算法优化、内存管理、线程管理、I/O性能等。以下是一些常见的优化建议和技巧:1.优化算法和数据结构选择合适的算法:优化性能的首要步骤是选择正确的算法。例如,使用二分查找代替线性查找,或者使用合适的排序算法来替代简单的冒泡排序。选择合适的数据结构:数据结构的选择对系统的性能有很大影响。例如,如果需要频繁的插入和删除操作,使用LinkedList而不是ArrayList可能会
- Python入门实战:Python的代码重构
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能大数据人工智能语言模型AILLMJavaPython架构设计
1.背景介绍Python是一种基于社区发展、易用性、生态系统完善、可扩展性强、性能卓越等特点的高级编程语言。作为一门解释型语言,它具有高效率、简洁语法、丰富的库函数、跨平台能力和多种开发范式等优点。但随着项目不断迭代更新,代码量逐渐增加,导致代码结构混乱、缺乏模块化设计、重复逻辑过多、命名不规范等问题。如何有效地组织、管理和维护代码、提升代码质量、更好地实现功能,是一个技术人的日常工作。如何进行代
- DeepSeek-R1模型1.5b、7b、8b、14b、32b、70b和671b有啥区别?
facaixxx2024
AI大模型人工智能算法深度学习
deepseek-r1的1.5b、7b、8b、14b、32b、70b和671b有啥区别?码笔记mabiji.com分享:1.5B、7B、8B、14B、32B、70B是蒸馏后的小模型,671B是基础大模型,它们的区别主要体现在参数规模、模型容量、性能表现、准确性、训练成本、推理成本和不同使用场景:deepseek-r1的1.5b、7b、8b、14b、32b、70b和671b参数规模参数规模的区别,模
- 优化 Java 数据结构选择与使用,提升程序性能与可维护性
chenOnlyOne
学习java数据结构开发语言
优化Java数据结构选择与使用,提升程序性能与可维护性引言在软件开发中,数据结构的选择是影响程序性能、内存使用以及代码可维护性的关键因素之一。Java作为一门广泛使用的编程语言,提供了丰富的内置数据结构,如数组、链表、栈、队列、树、图以及集合框架中的各种接口实现(如List,Set,Map等)。然而,面对不同的应用场景,如何合理地选择和优化数据结构,成为了一个值得深入探讨的话题。本文将介绍几种常见
- PL/SQL语言的压力测试
穆骊瑶
包罗万象golang开发语言后端
PL/SQL语言的压力测试引言在现代软件开发中,随着企业信息系统的复杂性和业务需求的不断增加,数据库系统的可靠性和性能变得尤为重要。PL/SQL作为Oracle数据库的存储过程语言,广泛应用于企业级应用开发中。为了确保系统在高负载环境下的稳定性和性能,压力测试(StressTesting)显得尤为重要。本文将深入探讨PL/SQL语言的压力测试,包括其定义、重要性、实施步骤及工具,以及最佳实践等内容
- 从0到1构建AI深度学习视频分析系统--基于YOLO 目标检测的动作序列检查系统:(2)消息队列与消息中间件
shiter
人工智能系统解决方案与技术架构人工智能深度学习音视频
文章大纲原始视频队列Python内存视频缓存优化方案(4GB以内)一、核心参数设计二、内存管理实现三、性能优化策略四、内存占用验证五、高级优化技巧六、部署建议检测结果队列YOLO检测结果队列技术方案一、技术选型矩阵二、核心实现代码三、性能优化策略四、可视化方案对比五、部署建议逻辑判定队列时间片图论时间序列大模型引入参考文献原始视频队列想要在单机内存中缓存1-5分钟的视频片段,python技术栈的话
- Spring AOP、Java Agent 与 ASM 的作用和区别
潇凝子潇
javaspring后端
SpringAOP、JavaAgent与ASM的作用和区别1.作用技术作用典型应用场景AOP通过分离横切关注点(如日志、事务、权限),在方法调用前后动态注入代码,实现非侵入式功能增强。SpringAOP(基于动态代理)、AspectJ(编译时/运行时增强)JavaAgent基于JVM的InstrumentationAPI,在类加载时或运行时修改字节码,支持对全量类的监控或增强。性能监控(如APM工
- 从零开始大模型开发与微调:PyCharm的下载与安装
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyCharm的下载与安装1.背景介绍随着人工智能和深度学习技术的不断发展,大型语言模型(LargeLanguageModels,LLMs)已经成为当前最引人注目的研究热点之一。LLMs能够在各种自然语言处理任务上展现出惊人的性能,例如机器翻译、文本生成、问答系统等。PyTorch和TensorFlow等深度学习框架为训练和微调大型语言模型提供了强大的支持。PyCharm
- 82.HarmonyOS NEXT 性能优化指南:从理论到实践
harmonyos-next
温馨提示:本篇博客的详细代码已发布到git:https://gitcode.com/nutpi/HarmonyosNext可以下载运行哦!HarmonyOSNEXT性能优化指南:从理论到实践1.性能优化概述1.1性能指标指标类型关键指标目标值启动时间首屏渲染=[];privatepageSize:number=20;//2.使用虚拟列表build(){List(){LazyForEach(this
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C