/来自几个大佬的文章,均已注明出处/
0.什么是机器学习
个人理解:
就是根据各种经验(特征)机器自己生成一个模型(一组函数 判断标准),然后这个模型可以用来判断新的情况。跟人类由已知经验判断事物的过程(就是学习)相近,就叫做机器学习了。
一个故事说明什么是机器学习
/这个是引用原作者的博文,他说的太好了/
机器学习这个词是让人疑惑的,首先它是英文名称Machine Learning(简称ML)的直译,在计算界Machine一般指计算机。这个名字使用了拟人的手法,说明了这门技术是让机器“学习”的技术。但是计算机是死的,怎么可能像人类一样“学习”呢?
传统上如果我们想让计算机工作,我们给它一串指令,然后它遵照这个指令一步步执行下去。有因有果,非常明确。但这样的方式在机器学习中行不通。机器学习根本不接受你输入的指令,相反,它接受你输入的数据! 也就是说,机器学习是一种让计算机利用数据而不是指令来进行各种工作的方法。这听起来非常不可思议,但结果上却是非常可行的。“统计”思想将在你学习“机器学习”相关理念时无时无刻不伴随,相关而不是因果的概念将是支撑机器学习能够工作的核心概念。你会颠覆对你以前所有程序中建立的因果无处不在的根本理念。
下面我通过一个故事来简单地阐明什么是机器学习。这个故事比较适合用在知乎上作为一个概念的阐明。在这里,这个故事没有展开,但相关内容与核心是存在的。如果你想简单的了解一下什么是机器学习,那么看完这个故事就足够了。如果你想了解机器学习的更多知识以及与它关联紧密的当代技术,那么请你继续往下看,后面有更多的丰富的内容。
这个例子来源于我真实的生活经验,我在思考这个问题的时候突然发现它的过程可以被扩充化为一个完整的机器学习的过程,因此我决定使用这个例子作为所有介绍的开始。这个故事称为“等人问题”。
我相信大家都有跟别人相约,然后等人的经历。现实中不是每个人都那么守时的,于是当你碰到一些爱迟到的人,你的时间不可避免的要浪费。我就碰到过这样的一个例子。
对我的一个朋友小Y而言,他就不是那么守时,最常见的表现是他经常迟到。当有一次我跟他约好3点钟在某个麦当劳见面时,在我出门的那一刻我突然想到一个问题:我现在出发合适么?我会不会又到了地点后,花上30分钟去等他?我决定采取一个策略解决这个问题。
要想解决这个问题,有好几种方法。第一种方法是采用知识:我搜寻能够解决这个问题的知识。但很遗憾,没有人会把如何等人这个问题作为知识传授,因此我不可能找到已有的知识能够解决这个问题。第二种方法是问他人:我去询问他人获得解决这个问题的能力。但是同样的,这个问题没有人能够解答,因为可能没人碰上跟我一样的情况。第三种方法是准则法:我问自己的内心,我有否设立过什么准则去面对这个问题?例如,无论别人如何,我都会守时到达。但我不是个死板的人,我没有设立过这样的规则。
事实上,我相信有种方法比以上三种都合适。我把过往跟小Y相约的经历在脑海中重现一下,看看跟他相约的次数中,迟到占了多大的比例。而我利用这来预测他这次迟到的可能性。如果这个值超出了我心里的某个界限,那我选择等一会再出发。假设我跟小Y约过5次,他迟到的次数是1次,那么他按时到的比例为80%,我心中的阈值为70%,我认为这次小Y应该不会迟到,因此我按时出门。如果小Y在5次迟到的次数中占了4次,也就是他按时到达的比例为20%,由于这个值低于我的阈值,因此我选择推迟出门的时间。这个方法从它的利用层面来看,又称为经验法。在经验法的思考过程中,我事实上利用了以往所有相约的数据。因此也可以称之为依据数据做的判断。
依据数据所做的判断跟机器学习的思想根本上是一致的。
刚才的思考过程我只考虑“频次”这种属性。在真实的机器学习中,这可能都不算是一个应用。一般的机器学习模型至少考虑两个量:一个是因变量,也就是我们希望预测的结果,在这个例子里就是小Y迟到与否的判断。另一个是自变量,也就是用来预测小Y是否迟到的量。假设我把时间作为自变量,譬如我发现小Y所有迟到的日子基本都是星期五,而在非星期五情况下他基本不迟到。于是我可以建立一个模型,来模拟小Y迟到与否跟日子是否是星期五的概率。见下图:
当我们考虑的自变量只有一个时,情况较为简单。如果把我们的自变量再增加一个。例如小Y迟到的部分情况时是在他开车过来的时候(你可以理解为他开车水平较臭,或者路较堵)。于是我可以关联考虑这些信息。建立一个更复杂的模型,这个模型包含两个自变量与一个因变量。
再更复杂一点,小Y的迟到跟天气也有一定的原因,例如下雨的时候,这时候我需要考虑三个自变量。
如果我希望能够预测小Y迟到的具体时间,我可以把他每次迟到的时间跟雨量的大小以及前面考虑的自变量统一建立一个模型。于是我的模型可以预测值,例如他大概会迟到几分钟。这样可以帮助我更好的规划我出门的时间。在这样的情况下,决策树就无法很好地支撑了,因为决策树只能预测离散值。我们可以用节2所介绍的线型回归方法建立这个模型。
如果我把这些建立模型的过程交给电脑。比如把所有的自变量和因变量输入,然后让计算机帮我生成一个模型,同时让计算机根据我当前的情况,给出我是否需要迟出门,需要迟几分钟的建议。那么计算机执行这些辅助决策的过程就是机器学习的过程。
机器学习方法是计算机利用已有的数据(经验),得出了某种模型(迟到的规律),并利用此模型预测未来(是否迟到)的一种方法。
1.机器学习与其他一些概念的区别
人工智能是机器学习的父类。深度学习则是机器学习的子类。机器学习跟模式识别,统计学习,数据挖掘,计算机视觉,语音识别,自然语言处理等领域有着很深的联系。
从范围上来说,机器学习跟模式识别,统计学习,数据挖掘是类似的,同时,机器学习与其他领域的处理技术的结合,形成了计算机视觉、语音识别、自然语言处理等交叉学科。因此,一般说数据挖掘时,可以等同于说机器学习。同时,我们平常所说的机器学习应用,应该是通用的,不仅仅局限在结构化数据,还有图像,音频等应用。
模式识别
**模式识别=机器学习。**两者的主要区别在于前者是从工业界发展起来的概念,后者则主要源自计算机学科。在著名的《Pattern Recognition And Machine Learning》这本书中,Christopher M. Bishop在开头是这样说的“模式识别源自工业界,而机器学习来自于计算机学科。不过,它们中的活动可以被视为同一个领域的两个方面,同时在过去的10年间,它们都有了长足的发展”。
数据挖掘
**数据挖掘=机器学习+数据库。**这几年数据挖掘的概念实在是太耳熟能详。几乎等同于炒作。但凡说数据挖掘都会吹嘘数据挖掘如何如何,例如从数据中挖出金子,以及将废弃的数据转化为价值等等。但是,我尽管可能会挖出金子,但我也可能挖的是“石头”啊。这个说法的意思是,数据挖掘仅仅是一种思考方式,告诉我们应该尝试从数据中挖掘出知识,但不是每个数据都能挖掘出金子的,所以不要神话它。一个系统绝对不会因为上了一个数据挖掘模块就变得无所不能(这是IBM最喜欢吹嘘的),恰恰相反,一个拥有数据挖掘思维的人员才是关键,而且他还必须对数据有深刻的认识,这样才可能从数据中导出模式指引业务的改善。大部分数据挖掘中的算法是机器学习的算法在数据库中的优化。
统计学习
**统计学习近似等于机器学习。**统计学习是个与机器学习高度重叠的学科。因为机器学习中的大多数方法来自统计学,甚至可以认为,统计学的发展促进机器学习的繁荣昌盛。例如著名的支持向量机算法,就是源自统计学科。但是在某种程度上两者是有分别的,这个分别在于:统计学习者重点关注的是统计模型的发展与优化,偏数学,而机器学习者更关注的是能够解决问题,偏实践,因此机器学习研究者会重点研究学习算法在计算机上执行的效率与准确性的提升。
计算机视觉
**计算机视觉=图像处理+机器学习。**图像处理技术用于将图像处理为适合进入机器学习模型中的输入,机器学习则负责从图像中识别出相关的模式。计算机视觉相关的应用非常的多,例如百度识图、手写字符识别、车牌识别等等应用。这个领域是应用前景非常火热的,同时也是研究的热门方向。随着机器学习的新领域深度学习的发展,大大促进了计算机图像识别的效果,因此未来计算机视觉界的发展前景不可估量。
语音识别
语音识别=语音处理+机器学习。语音识别就是音频处理技术与机器学习的结合。语音识别技术一般不会单独使用,一般会结合自然语言处理的相关技术。目前的相关应用有苹果的语音助手siri等。
自然语言处理
自然语言处理=文本处理+机器学习。自然语言处理技术主要是让机器理解人类的语言的一门领域。在自然语言处理技术中,大量使用了编译原理相关的技术,例如词法分析,语法分析等等,除此之外,在理解这个层面,则使用了语义理解,机器学习等技术。作为唯一由人类自身创造的符号,自然语言处理一直是机器学习界不断研究的方向。按照百度机器学习专家余凯的说法“听与看,说白了就是阿猫和阿狗都会的,而只有语言才是人类独有的”。如何利用机器学习技术进行自然语言的的深度理解,一直是工业和学术界关注的焦点。
2.机器学习的定义
从广义上来说,机器学习是一种能够赋予机器学习的能力以此让它完成直接编程无法完成的功能的方法。但从实践的意义上来说,机器学习是一种通过利用数据,训练出模型,然后使用模型预测的一种方法。
拿国民话题的房子来说。现在我手里有一栋房子需要售卖,我应该给它标上多大的价格?房子的面积是100平方米,价格是100万,120万,还是140万?
很显然,我希望获得房价与面积的某种规律。那么我该如何获得这个规律?用报纸上的房价平均数据么?还是参考别人面积相似的?无论哪种,似乎都并不是太靠谱。
我现在希望获得一个合理的,并且能够最大程度的反映面积与房价关系的规律。于是我调查了周边与我房型类似的一些房子,获得一组数据。这组数据中包含了大大小小房子的面积与价格,如果我能从这组数据中找出面积与价格的规律,那么我就可以得出房子的价格。
对规律的寻找很简单,拟合出一条直线,让它“穿过”所有的点,并且与各个点的距离尽可能的小。
通过这条直线,我获得了一个能够最佳反映房价与面积规律的规律。这条直线同时也是一个下式所表明的函数:
房价 = 面积 * a + b
上述中的a、b都是直线的参数。获得这些参数以后,我就可以计算出房子的价格。
假设a = 0.75,b = 50,则房价 = 100 * 0.75 + 50 = 125万。这个结果与我前面所列的100万,120万,140万都不一样。由于这条直线综合考虑了大部分的情况,因此从“统计”意义上来说,这是一个最合理的预测。
在求解过程中透露出了两个信息:
1.房价模型是根据拟合的函数类型决定的。如果是直线,那么拟合出的就是直线方程。如果是其他类型的线,例如抛物线,那么拟合出的就是抛物线方程。机器学习有众多算法,一些强力算法可以拟合出复杂的非线性模型,用来反映一些不是直线所能表达的情况。
2.如果我的数据越多,我的模型就越能够考虑到越多的情况,由此对于新情况的预测效果可能就越好。这是机器学习界“数据为王”思想的一个体现。一般来说(不是绝对),数据越多,最后机器学习生成的模型预测的效果越好。
通过我拟合直线的过程,我们可以对机器学习过程做一个完整的回顾。首先,我们需要在计算机中存储历史的数据。接着,我们将这些 数据通过机器学习算法进行处理,这个过程在机器学习中叫做“训练”,处理的结果可以被我们用来对新的数据进行预测,这个结果一般称之为“模型”。对新数据 的预测过程在机器学习中叫做“预测”。“训练”与“预测”是机器学习的两个过程,“模型”则是过程的中间输出结果,“训练”产生“模型”,“模型”指导 “预测”。
让我们把机器学习的过程与人类对历史经验归纳的过程做个比对。
人类在成长、生活过程中积累了很多的历史与经验。人类定期地对这些经验进行“归纳”,获得了生活的“规律”。当人类遇到未知的问题或者需要对未来进行“推测”的时候,人类使用这些“规律”,对未知问题与未来进行“推测”,从而指导自己的生活和工作。
机器学习中的“训练”与“预测”过程可以对应到人类的“归纳”和“推测”过程。通过这样的对应,我们可以发现,机器学习的思想并不复杂,仅仅是对人类在生活中学习成长的一个模拟。由于机器学习不是基于编程形成的结果,因此它的处理过程不是因果的逻辑,而是通过归纳思想得出的相关性结论。
3.机器学习的方法
通过上节的介绍我们知晓了机器学习的大致范围,那么机器学习里面究竟有多少经典的算法呢?在这个部分我会简要介绍一下机器学习中的经典代表方法。这部分介绍的重点是这些方法内涵的思想,数学与实践细节不会在这讨论。
1、回归算法
在大部分机器学习课程中,回归算法都是介绍的第一个算法。原因有两个:一.回归算法比较简单,介绍它可以让人平滑地从统计学迁移到机器学习中。二.回归算法是后面若干强大算法的基石,如果不理解回归算法,无法学习那些强大的算法。回归算法有两个重要的子类:即线性回归和逻辑回归。
线性回归就是我们前面说过的房价求解问题。如何拟合出一条直线最佳匹配我所有的数据?一般使用“最小二乘法”来求解。“最小二乘法”的思想是这样的,假设我们拟合出的直线代表数据的真实值,而观测到的数据代表拥有误差的值。为了尽可能减小误差的影响,需要求解一条直线使所有误差的平方和最小。最小二乘法将最优问题转化为求函数极值问题。函数极值在数学上我们一般会采用求导数为0的方法。但这种做法并不适合计算机,可能求解不出来,也可能计算量太大。
计算机科学界专门有一个学科叫“数值计算”,专门用来提升计算机进行各类计算时的准确性和效率问题。例如,著名的“梯度下降”以及“牛顿法”就是数值计算中的经典算法,也非常适合来处理求解函数极值的问题。梯度下降法是解决回归模型中最简单且有效的方法之一。从严格意义上来说,由于后文中的神经网络和推荐算法中都有线性回归的因子,因此梯度下降法在后面的算法实现中也有应用。
逻辑回归是一种与线性回归非常类似的算法,但是,从本质上讲,线型回归处理的问题类型与逻辑回归不一致。线性回归处理的是数值问题,也就是最后预测出的结果是数字,例如房价。而逻辑回归属于分类算法,也就是说,逻辑回归预测结果是离散的分类,例如判断这封邮件是否是垃圾邮件,以及用户是否会点击此广告等等。
实现方面的话,逻辑回归只是对对线性回归的计算结果加上了一个Sigmoid函数,将数值结果转化为了0到1之间的概率(Sigmoid函数的图像一般来说并不直观,你只需要理解对数值越大,函数越逼近1,数值越小,函数越逼近0),接着我们根据这个概率可以做预测,例如概率大于0.5,则这封邮件就是垃圾邮件,或者肿瘤是否是恶性的等等。从直观上来说,逻辑回归是画出了一条分类线,见下图。
假设我们有一组肿瘤患者的数据,这些患者的肿瘤中有些是良性的(图中的蓝色点),有些是恶性的(图中的红色点)。这里肿瘤的红蓝色可以被称作数据的“标签”。同时每个数据包括两个“特征”:患者的年龄与肿瘤的大小。我们将这两个特征与标签映射到这个二维空间上,形成了我上图的数据。
当我有一个绿色的点时,我该判断这个肿瘤是恶性的还是良性的呢?根据红蓝点我们训练出了一个逻辑回归模型,也就是图中的分类线。这时,根据绿点出现在分类线的左侧,因此我们判断它的标签应该是红色,也就是说属于恶性肿瘤。
逻辑回归算法划出的分类线基本都是线性的(也有划出非线性分类线的逻辑回归,不过那样的模型在处理数据量较大的时候效率会很低),这意味着当两类之间的界线不是线性时,逻辑回归的表达能力就不足。下面的两个算法是机器学习界最强大且重要的算法,都可以拟合出非线性的分类线。
2、神经网络
神经网络(也称之为人工神经网络,ANN)算法是80年代机器学习界非常流行的算法,不过在90年代中途衰落。现在,携着“深度学习”之势,神经网络重装归来,重新成为最强大的机器学习算法之一。
神经网络的诞生起源于对大脑工作机理的研究。早期生物界学者们使用神经网络来模拟大脑。机器学习的学者们使用神经网络进行机器学习的实验,发现在视觉与语音的识别上效果都相当好。在BP算法(加速神经网络训练过程的数值算法)诞生以后,神经网络的发展进入了一个热潮。BP算法的发明人之一是前面介绍的机器学习大牛Geoffrey Hinton(图1中的中间者)。
具体说来,神经网络的学习机理是什么?简单来说,就是分解与整合。在著名的Hubel-Wiesel试验中,学者们研究猫的视觉分析机理是这样的。
比方说,一个正方形,分解为四个折线进入视觉处理的下一层中。四个神经元分别处理一个折线。每个折线再继续被分解为两条直线,每条直线再被分解为黑白两个面。于是,一个复杂的图像变成了大量的细节进入神经元,神经元处理以后再进行整合,最后得出了看到的是正方形的结论。这就是大脑视觉识别的机理,也是神经网络工作的机理。
让我们看一个简单的神经网络的逻辑架构。在这个网络中,分成输入层,隐藏层,和输出层。输入层负责接收信号,隐藏层负责对数据的分解与处理,最后的结果被整合到输出层。每层中的一个圆代表一个处理单元,可以认为是模拟了一个神经元,若干个处理单元组成了一个层,若干个层再组成了一个网络,也就是"神经网络"。
3.决策树
决策树是一种机器学习的方法。决策树的生成算法有ID3, C4.5和C5.0等。决策树是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果。决策树是一种十分常用的分类方法,需要监管学习(有教师的Supervised Learning),监管学习就是给出一堆样本,每个样本都有一组属性和一个分类结果,也就是分类结果已知,那么通过学习这些样本得到一个决策树,这个决策树能够对新的数据给出正确的分类。这里通过一个简单的例子来说明决策树的构成思路:给出如下的一组数据,一共有十个样本(学生数量),每个样本有分数,出勤率,回答问题次数,作业提交率四个属性,最后判断这些学生是否是好学生。最后一列给出了人工分类结果。
然后用这一组附带分类结果的样本可以训练出多种多样的决策树,这里为了简化过程,我们假设决策树为二叉树,且类似于下图:
通过学习上表的数据,可以设置A,B,C,D,E的具体值,而A,B,C,D,E则称为阈值。
所以决策树的生成主要分以下两步,这两步通常通过学习已经知道分类结果的样本来实现。
1.节点的分裂:一般当一个节点所代表的属性无法给出判断时,则选择将这一节点分成2个 子节点(如不是二叉树的情况会分成n个子节点)
2.阈值的确定:选择适当的阈值使得分类错误率最小 (Training Error)。比较常用的决策树有ID3,C4.5和CART(Classification And Regression Tree),CART的分类效果一般优于其他决策树。
4.随机森林
随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本为那一类。随机森林可以既可以处理属性为离散值的量,比如ID3算法,也可以处理属性为连续值的量,比如C4.5算法。另外,随机森林还可以用来进行无监督学习聚类和异常点检测。
引用参考:
1.周志华 《机器学习》
2.https://www.cnblogs.com/subconscious/p/4107357.html
3.https://zhuanlan.zhihu.com/p/30059442