使用Azure人脸API对图片进行人脸识别

人脸识别是人工智能机器学习比较成熟的一个领域。人脸识别已经应用到了很多生产场景。比如生物认证,人脸考勤,人流监控等场景。对于很多中小功能由于技术门槛问题很难自己实现人脸识别的算法。Azure人脸API对人脸识别机器学习算法进行封装提供REST API跟SDK方便用户进行自定义开发。

Azure人脸API可以对图像中的人脸进行识别,返回面部的坐标、性别、年龄、情感、愤怒还是高兴、是否微笑,是否带眼镜等等非常有意思的信息。
Azure人脸API也是一个免费服务,每个月30000次事务的免费额度。

创建人脸服务

使用Azure人脸API对图片进行人脸识别_第1张图片
填写实例名,选择一个区域,同样选离你近的。

获取秘钥跟终结点

使用Azure人脸API对图片进行人脸识别_第2张图片
选中侧边菜单“秘钥于终结点”,获取信息,这2个信息后面再sdk调用中需要用到。

新建WPF应用

新建一个WPF应用实现以下功能:

  1. 选择图片后把原图显示出来
  2. 选中后马上进行识别
  3. 识别成功后把脸部用红框描述出来
  4. 当鼠标移动到红框内的时候显示详细脸部信息

安装SDK

使用nuget安装对于的sdk包:

Install-Package Microsoft.Azure.CognitiveServices.Vision.Face -Version 2.5.0-preview.2

实现界面

编辑MainWindow.xml放置图像显示区域、文件选中、描述显示区域


    
        
        
            

构造函数

在编辑MainWindow类的构造函数初始化FaceClient等数据

   private IFaceClient _faceClient;

        //检测到的人脸
        private IList _faceList;
        //人脸描述信息
        private string[] _faceDescriptions;
        private double _resizeFactor;

        private const string _defaultStatusBarText =
            "鼠标移动到面部显示描述信息.";
        public MainWindow()
        {
            InitializeComponent();
            //faceid的订阅key
            string subscriptionKey = "";
            // faceid的终结的配置
            string faceEndpoint = "";
            _faceClient = new FaceClient(
                new ApiKeyServiceClientCredentials(subscriptionKey),
                new System.Net.Http.DelegatingHandler[] { });
            if (Uri.IsWellFormedUriString(faceEndpoint, UriKind.Absolute))
            {
                _faceClient.Endpoint = faceEndpoint;
            }
            else
            {
                MessageBox.Show(faceEndpoint,
                    "Invalid URI", MessageBoxButton.OK, MessageBoxImage.Error);
                Environment.Exit(0);
            }
        }

图片选择并显示

  // 选择图片并上传
        private async void BrowseButton_Click(object sender, RoutedEventArgs e)
        {
            var openDlg = new Microsoft.Win32.OpenFileDialog();

            openDlg.Filter = "JPEG Image(*.jpg)|*.jpg";
            bool? result = openDlg.ShowDialog(this);

            if (!(bool)result)
            {
                return;
            }

            // Display the image file.
            string filePath = openDlg.FileName;

            Uri fileUri = new Uri(filePath);
            BitmapImage bitmapSource = new BitmapImage();

            bitmapSource.BeginInit();
            bitmapSource.CacheOption = BitmapCacheOption.None;
            bitmapSource.UriSource = fileUri;
            bitmapSource.EndInit();

            FacePhoto.Source = bitmapSource;

            // Detect any faces in the image.
            Title = "识别中...";
            _faceList = await UploadAndDetectFaces(filePath);
            Title = String.Format(
                "识别完成. {0}个人脸", _faceList.Count);

            if (_faceList.Count > 0)
            {
                // Prepare to draw rectangles around the faces.
                DrawingVisual visual = new DrawingVisual();
                DrawingContext drawingContext = visual.RenderOpen();
                drawingContext.DrawImage(bitmapSource,
                    new Rect(0, 0, bitmapSource.Width, bitmapSource.Height));
                double dpi = bitmapSource.DpiX;
                // Some images don't contain dpi info.
                _resizeFactor = (dpi == 0) ? 1 : 96 / dpi;
                _faceDescriptions = new String[_faceList.Count];

                for (int i = 0; i < _faceList.Count; ++i)
                {
                    DetectedFace face = _faceList[i];

                    //画方框
                    drawingContext.DrawRectangle(
                        Brushes.Transparent,
                        new Pen(Brushes.Red, 2),
                        new Rect(
                            face.FaceRectangle.Left * _resizeFactor,
                            face.FaceRectangle.Top * _resizeFactor,
                            face.FaceRectangle.Width * _resizeFactor,
                            face.FaceRectangle.Height * _resizeFactor
                            )
                    );

                    _faceDescriptions[i] = FaceDescription(face);
                }

                drawingContext.Close();

                RenderTargetBitmap faceWithRectBitmap = new RenderTargetBitmap(
                    (int)(bitmapSource.PixelWidth * _resizeFactor),
                    (int)(bitmapSource.PixelHeight * _resizeFactor),
                    96,
                    96,
                    PixelFormats.Pbgra32);

                faceWithRectBitmap.Render(visual);
                FacePhoto.Source = faceWithRectBitmap;

                faceDescriptionStatusBar.Text = _defaultStatusBarText;
            }
        }

     

调用SDK进行识别

指定需要识别的要素,调用sdk进行图像识别

   // 上传图片使用faceclient识别
        private async Task> UploadAndDetectFaces(string imageFilePath)
        {
            IList faceAttributes =
                new FaceAttributeType[]
                {
            FaceAttributeType.Gender, FaceAttributeType.Age,
            FaceAttributeType.Smile, FaceAttributeType.Emotion,
            FaceAttributeType.Glasses, FaceAttributeType.Hair
                };

            using (Stream imageFileStream = File.OpenRead(imageFilePath))
            {
                IList faceList =
                    await _faceClient.Face.DetectWithStreamAsync(
                        imageFileStream, true, false, faceAttributes);
                return faceList;
            }
        }

显示脸部的描述

对人脸识别后的结果信息组装成字符串,当鼠标移动到人脸上的时候显示这些信息。

 /// 
        /// 鼠标移动显示脸部描述
        /// 
        /// 
        /// 
        private void FacePhoto_MouseMove(object sender, MouseEventArgs e)
        {
            if (_faceList == null)
                return;

            Point mouseXY = e.GetPosition(FacePhoto);

            ImageSource imageSource = FacePhoto.Source;
            BitmapSource bitmapSource = (BitmapSource)imageSource;

            var scale = FacePhoto.ActualWidth / (bitmapSource.PixelWidth / _resizeFactor);

            bool mouseOverFace = false;

            for (int i = 0; i < _faceList.Count; ++i)
            {
                FaceRectangle fr = _faceList[i].FaceRectangle;
                double left = fr.Left * scale;
                double top = fr.Top * scale;
                double width = fr.Width * scale;
                double height = fr.Height * scale;

                if (mouseXY.X >= left && mouseXY.X <= left + width &&
                    mouseXY.Y >= top && mouseXY.Y <= top + height)
                {
                    faceDescriptionStatusBar.Text = _faceDescriptions[i];
                    mouseOverFace = true;
                    break;
                }
            }

            if (!mouseOverFace) faceDescriptionStatusBar.Text = _defaultStatusBarText;
        }
 /// 
        /// 脸部描述
        /// 
        /// 
        /// 
        private string FaceDescription(DetectedFace face)
        {
            StringBuilder sb = new StringBuilder();

            sb.Append("人脸: ");

            // 性别年龄
            sb.Append(face.FaceAttributes.Gender.Value == Gender.Female ? "女性" : "男性");
            sb.Append(", ");
            sb.Append(face.FaceAttributes.Age.ToString() + "岁");
            sb.Append(", ");
            sb.Append(String.Format("微笑 {0:F1}%, ", face.FaceAttributes.Smile * 100));

            // 显示超过0.1的表情
            sb.Append("表情: ");
            Emotion emotionScores = face.FaceAttributes.Emotion;
            if (emotionScores.Anger >= 0.1f) sb.Append(
                String.Format("生气 {0:F1}%, ", emotionScores.Anger * 100));
            if (emotionScores.Contempt >= 0.1f) sb.Append(
                String.Format("蔑视 {0:F1}%, ", emotionScores.Contempt * 100));
            if (emotionScores.Disgust >= 0.1f) sb.Append(
                String.Format("厌恶 {0:F1}%, ", emotionScores.Disgust * 100));
            if (emotionScores.Fear >= 0.1f) sb.Append(
                String.Format("恐惧 {0:F1}%, ", emotionScores.Fear * 100));
            if (emotionScores.Happiness >= 0.1f) sb.Append(
                String.Format("高兴 {0:F1}%, ", emotionScores.Happiness * 100));
            if (emotionScores.Neutral >= 0.1f) sb.Append(
                String.Format("自然 {0:F1}%, ", emotionScores.Neutral * 100));
            if (emotionScores.Sadness >= 0.1f) sb.Append(
                String.Format("悲伤 {0:F1}%, ", emotionScores.Sadness * 100));
            if (emotionScores.Surprise >= 0.1f) sb.Append(
                String.Format("惊喜 {0:F1}%, ", emotionScores.Surprise * 100));

            sb.Append(face.FaceAttributes.Glasses);
            sb.Append(", ");

            sb.Append("头发: ");

            if (face.FaceAttributes.Hair.Bald >= 0.01f)
                sb.Append(String.Format("秃头 {0:F1}% ", face.FaceAttributes.Hair.Bald * 100));

            IList hairColors = face.FaceAttributes.Hair.HairColor;
            foreach (HairColor hairColor in hairColors)
            {
                if (hairColor.Confidence >= 0.1f)
                {
                    sb.Append(hairColor.Color.ToString());
                    sb.Append(String.Format(" {0:F1}% ", hairColor.Confidence * 100));
                }
            }

            return sb.ToString();
        }

运行

到此我们的应用打造完成了。先让我们选择一张结衣的图片试试:
使用Azure人脸API对图片进行人脸识别_第3张图片
看看我们的结衣微笑率97.9%。

再选一张杰伦的图片试试:
使用Azure人脸API对图片进行人脸识别_第4张图片
嗨,杰伦就是不喜欢笑,微笑率0% 。。。

总结

通过简单的一个wpf的应用我们演示了如果使用Azure人脸API进行图片中的人脸检测,真的非常方便,识别代码只有1行而已。如果不用C# sdk还可以使用更加通用的rest api来调用,这样可以适配任何开发语言。Azure人脸API除了能对图片中的人脸进行检测,还可以对多个人脸进行比对,检测是否是同一个人,这样就可以实现人脸考勤等功能了,这个下次再说吧。

你可能感兴趣的:(使用Azure人脸API对图片进行人脸识别)