http://challenge.xfyun.cn/topic/info?type=Xray
import matplotlib
matplotlib.use('Agg')
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import paddlex as pdx
os.chdir('/home/aistudio/work/')
from random import shuffle
base = 'train'
domain_num = 6
raw_imgs = []
for i in range(1, domain_num+1):
xml_base = os.path.join(base, 'domain{}/XML'.format(i))
print(xml_base)
pts = os.listdir(xml_base)
for pt in pts:
if pt.endswith('.xml'):
pt = os.path.join('domain{}/XML'.format(i), pt)
img_pt = pt.replace('XML/', '').replace('.xml', '.jpg')
raw_imgs.append((img_pt, pt))
print('total_num:', len(raw_imgs))
print(raw_imgs[0])
shuffle(raw_imgs)
with open(os.path.join(base, 'train_list.txt'), 'w') as f:
for im in raw_imgs[:-200]:
info = '{} {}\n'.format(im[0], im[1]).replace('train/', '')
f.write(info)
print(info)
with open(os.path.join(base, 'val_list.txt'), 'w') as f:
for im in raw_imgs[-200:]:
info = '{} {}\n'.format(im[0], im[1]).replace('train/', '')
f.write(info)
print(info)
from paddlex.det import transforms
train_transforms = transforms.Compose([
transforms.RandomDistort(),
transforms.RandomCrop(),
transforms.Resize(target_size=608, interp='RANDOM'),
transforms.RandomHorizontalFlip(),
transforms.Normalize(),
])
eval_transforms = transforms.Compose([
transforms.Resize(target_size=608, interp='CUBIC'),
transforms.Normalize(),
])
base = './train/'
train_dataset = pdx.datasets.VOCDetection(
data_dir=base,
file_list=base+'train_list.txt',
label_list='label_list.txt',
transforms=train_transforms,
shuffle=True)
eval_dataset = pdx.datasets.VOCDetection(
data_dir=base,
file_list=base+'val_list.txt',
label_list='label_list.txt',
transforms=eval_transforms)
## 使用ET模块解析xml标注文件
import xml.etree.ElementTree as ET
import numpy as np
tar_size = 608
def load_one_info(name):
filename = os.path.join(base, name)
tree = ET.parse(filename)
size = tree.find('size')
width = float(size.find('width').text)
height = float(size.find('height').text)
ratio = min(tar_size / width, tar_size / height)
Objects = tree.findall('object')
objs_num = len(Objects)
Boxes = np.zeros((objs_num, 4), dtype=np.float32)
True_classes = np.zeros((objs_num), dtype=np.float32)
result = []
for i, obj in enumerate(Objects):
bbox = obj.find('bndbox')
x_min = float(bbox.find('xmin').text) - 1
y_min = float(bbox.find('ymin').text) - 1
x_max = float(bbox.find('xmax').text) - 1
y_max = float(bbox.find('ymax').text) - 1
w = ratio * (x_max - x_min)
h = ratio * (y_max - y_min)
result.append([w, h])
return result
def iou(box, clusters):
x = np.minimum(clusters[:, 0], box[0])
y = np.minimum(clusters[:, 1], box[1])
if np.count_nonzero(x == 0) > 0 or np.count_nonzero(y == 0) > 0:
return 0
raise ValueError("Box has no area")
intersection = x * y
box_area = box[0] * box[1]
cluster_area = clusters[:, 0] * clusters[:, 1]
iou_ = np.true_divide(intersection, box_area +
cluster_area - intersection + 1e-10)
# iou_ = intersection / (box_area + cluster_area - intersection + 1e-10)
return iou_
def avg_iou(boxes, clusters):
return np.mean([np.max(iou(boxes[i], clusters)) for i in range(boxes.shape[0])])
def translate_boxes(boxes):
new_boxes = boxes.copy()
for row in range(new_boxes.shape[0]):
new_boxes[row][2] = np.abs(new_boxes[row][2] - new_boxes[row][0])
new_boxes[row][3] = np.abs(new_boxes[row][3] - new_boxes[row][1])
return np.delete(new_boxes, [0, 1], axis=1)
def kmeans(boxes, k, dist=np.median):
rows = boxes.shape[0]
distances = np.empty((rows, k))
last_clusters = np.zeros((rows,))
np.random.seed()
# the Forgy method will fail if the whole array contains the same rows
clusters = boxes[np.random.choice(rows, k, replace=False)]
while True:
for row in range(rows):
distances[row] = 1 - iou(boxes[row], clusters)
nearest_clusters = np.argmin(distances, axis=1)
if (last_clusters == nearest_clusters).all():
break
for cluster in range(k):
clusters[cluster] = dist(
boxes[nearest_clusters == cluster], axis=0)
last_clusters = nearest_clusters
return clusters
def get_kmeans(anno, cluster_num=9):
anchors = kmeans(anno, cluster_num)
ave_iou = avg_iou(anno, anchors)
anchors = anchors.astype('int').tolist()
anchors = sorted(anchors, key=lambda x: x[0] * x[1])
return anchors, ave_iou
result = []
for _, name in raw_imgs:
result.extend(load_one_info(name))
result = np.array(result)
anchors, ave_iou = get_kmeans(result, 9)
anchor_string = ''
anchor_sizes = []
for anchor in anchors:
anchor_string += '{},{}, '.format(anchor[0], anchor[1])
anchor_sizes.append([anchor[0], anchor[1]])
anchor_string = anchor_string[:-2]
print('anchors are:')
print(anchor_string)
print('the average iou is:')
print(ave_iou)
num_classes = len(train_dataset.labels)
print('class num:', num_classes)
model = pdx.det.YOLOv3(num_classes=num_classes, backbone='DarkNet53', anchors=anchor_sizes)
model.train(
num_epochs=50,
train_dataset=train_dataset,
train_batch_size=4,
eval_dataset=eval_dataset,
learning_rate=0.000025,
lr_decay_epochs=[20, 40],
save_interval_epochs=2,
log_interval_steps=100,
# save_dir='./yolov3_darknet53',
pretrain_weights='./output/best_model',
# pretrain_weights='IMAGENET',
use_vdl=True)
model.evaluate(eval_dataset, batch_size=1, epoch_id=None, metric=None, return_details=False)
import cv2
import time
import matplotlib.pyplot as plt
%matplotlib inline
image_name = './test1/test102099.jpg'
start = time.time()
result = model.predict(image_name, eval_transforms)
print('infer time:{:.6f}s'.format(time.time()-start))
print('detected num:', len(result))
im = cv2.imread(image_name)
font = cv2.FONT_HERSHEY_SIMPLEX
threshold = 0.5
for value in result:
xmin, ymin, w, h = np.array(value['bbox']).astype(np.int)
cls = value['category']
score = value['score']
if score < threshold:
continue
cv2.rectangle(im, (xmin, ymin), (xmin+w, ymin+h), (0, 255, 0), 4)
cv2.putText(im, '{:s} {:.3f}'.format(cls, score),
(xmin, ymin), font, 0.5, (255, 0, 0), thickness=2)
cv2.imwrite('result.jpg', im)
plt.figure(figsize=(15,12))
plt.imshow(im[:, :, [2,1,0]])
plt.show()
test_base = './test1'
CLASSES = train_dataset.labels
data = []
threshold = 0.3
for v in os.listdir(test_base):
pt = os.path.join(test_base, v)
result = model.predict(image_name, eval_transforms)
temp = [[] for _ in num_classes]
for value in result:
xmin, ymin, w, h = np.array(value['bbox']).astype(np.int)
xmax = xmin + w
ymax = ymin + h
cls = value['category']
score = value['score']
if score < threshold:
continue
temp[CLASSED.index(cls)].append([xmin, ymin, xmax, ymax, score])
data.append(temp)
import json
with open('submission.json', 'w') as f:
json.dump(data, f)