第一道莫比乌斯反演。。。$qwq$
设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$
$F(n)=\sum_{n|d}f(d)=\lfloor \frac{N}{n} \rfloor \lfloor \frac{M}{n} \rfloor$
$f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)$
$ans=\sum_{p\in pri}f(p)$
$=\sum_{p\in pri}\sum_{p|d}\mu(\frac{d}{p})F(d)$
$=\sum_{d=1}^{min(N,M)}\sum_{p\in pri且p|d}\space\mu(\frac{d}{p})F(d)$
$=\sum_{d=1}^{min(N,M)}F(d)\sum_{p\in pri且p|d}\space\mu(\frac{d}{p})$
$=\sum_{d=1}^{min(N,M)}\lfloor \frac{N}{d} \rfloor \lfloor \frac{M}{d} \rfloor \sum_{p\in pri且p|d}\space\mu(\frac{d}{p})$
对于$\lfloor \frac{N}{d} \rfloor \lfloor \frac{M}{d} \rfloor$用整除分块,对于$a(d)=\sum_{p\in pri且p|d}\space\mu(\frac{d}{p})$用一个类似埃筛的思路把$a(d)$筛出来然后做一个前缀和。。
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
2019.06.09