回归模型的一些判断方法

在回归模型中,我们需要判断模型是否很好地拟合实际数据,一般来讲会有以下方法:

 

R平方:表示Y变量中的方差有百分之多少是可以预测的,R平方越高,Y中的方差就预测得越准确,模型的拟合程度也就越高。

举个例子,R平方=10%,表示Y中有10%的方差是可以通过X预测出来的。

 

F检验(F - test):主要用以判断两个总体(Population)的平均值是否存在显著差异(Significantly different),因此我们可以判断预测值跟实际值两组“总体”数据的平均值是否存在显著差异,如果存在,则可以认为回归模型拟合得不够好。如果F - value大于F值的统计量,我们认为拒绝原假设(两组数据不相关),则x和y(预测值和实际值)是线性(或者非线性)相关的,反正就是两组数有关。

 

T检验(T - test):T检验相对F检验来说,更关注回归方程中每个变量的显著程度,可以说F检验是评价模型整体的拟合程度,而T检验是评价回归方程中每个特征x变量的系数的显著程度。在这里,系数是跟0比较的,如果T - value大于T值的统计量,我们认为该特征的系数显著大于0,因此不可以忽略,需要考虑该特征,回归方程中也要保留该特征,如果小于T值统计量,则接收原假设,认为该特征系数跟0没有显著区别,我们可以忽略该特征。

 

AIC(Akaike Information Criterion):AIC是一种信息准则,它提供的是一个参考标准,也就是说,仅仅通过一个AIC值我们并不能得出回归模型的拟合程度,它更多的是通过多个AIC值对比不同回归模型。AIC的公式如下:

    AIC=-2ln(L)+2K

其中L是似然函数,K是参数数量,而如果总体数据(Population)的误差服从独立正态分布的时候,AIC公式变成:

   AIC=N\cdot ln(\frac{SSE}{N})+2K

其中N是数据的数量(观察数),K是参数数量,SSE(Sum of Squared Error)是误差的平方和。

AIC综合考虑了模型的拟合程度以及复杂程度,参考上述正态的公式,当SSE越大的时候,也就是拟合越不好,AIC值也会随着增大;同理,如果参数数量增多,也就是模型复杂度越大,AIC也会增大。单个AIC值参考的意义不大,但如果有两个或者多个AIC值在一起的时候,我们比较两者的AIC值,越小越好。因为考虑了模型复杂度,因此AIC减少了过拟合的可能性。

 

BIC(Bayesian Information Criterion):BIC跟AIC类似,同样提供拟合模型的信息准则,相对AIC,其对模型复杂度的惩罚更大,它的公式如下:

  BIC=K\cdot ln(N)-2\cdot ln(L)

其中L是似然函数,K是参数数量,当误差服从正态分布时候,BIC公式变成:

  BIC=K\cdot ln(N)+N\cdot ln(\frac{SSE}{N})

可以看出,当训练样本较小的时候,而模型过于复杂的时候(参数K过多),惩罚较大,BIC会增大,可以避免维度过多的情况。

你可能感兴趣的:(Machine,Learning)