基于darknet-53框架的Yolov3实验

基于darknet-53框架的Yolov3实验

配置环境虽然有点麻烦,但是跑出结果的时候还是感觉到了yolov3的强大,下面是跑出来的结果

首先是yolov3的输出结果:

茯苓@FL /cygdrive/d/软件/cygwin2/home/茯苓/darknet
$ ./darknet detect cfg/yolov3.cfg yolov3.weights data/person.jpg
layer     filters    size              input                output
    0 conv     32  3 x 3 / 1   608 x 608 x   3   ->   608 x 608 x  32  0.639 BFLOPs
    1 conv     64  3 x 3 / 2   608 x 608 x  32   ->   304 x 304 x  64  3.407 BFLOPs
    2 conv     32  1 x 1 / 1   304 x 304 x  64   ->   304 x 304 x  32  0.379 BFLOPs
    3 conv     64  3 x 3 / 1   304 x 304 x  32   ->   304 x 304 x  64  3.407 BFLOPs
    4 res    1                 304 x 304 x  64   ->   304 x 304 x  64
    5 conv    128  3 x 3 / 2   304 x 304 x  64   ->   152 x 152 x 128  3.407 BFLOPs
    6 conv     64  1 x 1 / 1   152 x 152 x 128   ->   152 x 152 x  64  0.379 BFLOPs
    7 conv    128  3 x 3 / 1   152 x 152 x  64   ->   152 x 152 x 128  3.407 BFLOPs
    8 res    5                 152 x 152 x 128   ->   152 x 152 x 128
    9 conv     64  1 x 1 / 1   152 x 152 x 128   ->   152 x 152 x  64  0.379 BFLOPs
   10 conv    128  3 x 3 / 1   152 x 152 x  64   ->   152 x 152 x 128  3.407 BFLOPs
   11 res    8                 152 x 152 x 128   ->   152 x 152 x 128
   12 conv    256  3 x 3 / 2   152 x 152 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   13 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
   14 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   15 res   12                  76 x  76 x 256   ->    76 x  76 x 256
   16 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
   17 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   18 res   15                  76 x  76 x 256   ->    76 x  76 x 256
   19 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
   20 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   21 res   18                  76 x  76 x 256   ->    76 x  76 x 256
   22 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
   23 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   24 res   21                  76 x  76 x 256   ->    76 x  76 x 256
   25 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
   26 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   27 res   24                  76 x  76 x 256   ->    76 x  76 x 256
   28 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
   29 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   30 res   27                  76 x  76 x 256   ->    76 x  76 x 256
   31 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
   32 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   33 res   30                  76 x  76 x 256   ->    76 x  76 x 256
   34 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
   35 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   36 res   33                  76 x  76 x 256   ->    76 x  76 x 256
   37 conv    512  3 x 3 / 2    76 x  76 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   38 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   39 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   40 res   37                  38 x  38 x 512   ->    38 x  38 x 512
   41 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   42 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   43 res   40                  38 x  38 x 512   ->    38 x  38 x 512
   44 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   45 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   46 res   43                  38 x  38 x 512   ->    38 x  38 x 512
   47 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   48 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   49 res   46                  38 x  38 x 512   ->    38 x  38 x 512
   50 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   51 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   52 res   49                  38 x  38 x 512   ->    38 x  38 x 512
   53 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   54 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   55 res   52                  38 x  38 x 512   ->    38 x  38 x 512
   56 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   57 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   58 res   55                  38 x  38 x 512   ->    38 x  38 x 512
   59 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   60 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   61 res   58                  38 x  38 x 512   ->    38 x  38 x 512
   62 conv   1024  3 x 3 / 2    38 x  38 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   63 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs
   64 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   65 res   62                  19 x  19 x1024   ->    19 x  19 x1024
   66 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs
   67 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   68 res   65                  19 x  19 x1024   ->    19 x  19 x1024
   69 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs
   70 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   71 res   68                  19 x  19 x1024   ->    19 x  19 x1024
   72 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs
   73 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   74 res   71                  19 x  19 x1024   ->    19 x  19 x1024
   75 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs
   76 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   77 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs
   78 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   79 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs
   80 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   81 conv    255  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 255  0.189 BFLOPs
   82 yolo
   83 route  79
   84 conv    256  1 x 1 / 1    19 x  19 x 512   ->    19 x  19 x 256  0.095 BFLOPs
   85 upsample            2x    19 x  19 x 256   ->    38 x  38 x 256
   86 route  85 61
   87 conv    256  1 x 1 / 1    38 x  38 x 768   ->    38 x  38 x 256  0.568 BFLOPs
   88 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   89 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   90 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   91 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   92 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   93 conv    255  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 255  0.377 BFLOPs
   94 yolo
   95 route  91
   96 conv    128  1 x 1 / 1    38 x  38 x 256   ->    38 x  38 x 128  0.095 BFLOPs
   97 upsample            2x    38 x  38 x 128   ->    76 x  76 x 128
   98 route  97 36
   99 conv    128  1 x 1 / 1    76 x  76 x 384   ->    76 x  76 x 128  0.568 BFLOPs
  100 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
  101 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
  102 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
  103 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
  104 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
  105 conv    255  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 255  0.754 BFLOPs
  106 yolo
Loading weights from yolov3.weights...Done!
data/person.jpg: Predicted in 27.833866 seconds.
horse: 100%
person: 100%
dog: 99%
基于darknet-53框架的Yolov3实验_第1张图片

基于darknet-53框架的Yolov3实验_第2张图片

要跑出这个结果还是挺容易的,可以配置python的环境,也可以配置vs的环境,我下载的cygwin这个软件,是一个仿真linux系统,实现基本的操作还是完全够用的,在这个里面进行make,当然还要下载darknet的框架,GitHub就可以下载。要带有darknet.exe的,感觉挺方便的,环境配置流程可以参考这个https://pjreddie.com/darknet/yolo/,关于cygwin的安装,网上资料很多,下载下来安装就可以了。

接下来是yolov3的网络结构

基于darknet-53框架的Yolov3实验_第3张图片

 Yolo(you look only once)使用了全新的训练方式筛选候选框——采用整图的方式来训练模型,并且可以一次性预测多个Box的位置和类别。 Yolo的方式是,先将图片分为S*S个网格,每个网格相当于一个任务,负责检测内部是否有物体的中心点落入该区域,一旦有的话,则启动该任务来检测n个bounding boxes对象。 bounding boxes由中心点坐标(x,y),宽高(w,h)和置信度评分这5部分组成。置信度评分可以理解为当前网格内物体属于该类别的概率与真实和预测区域的重叠度的乘积。 例如一共有4类物体,那么每个网格里面就会有该物体对应的这4个类的概率(p0,p1,p2,p3)同时通过bounding boxes的位置信息(x,y,w,h)可以知道其预测区域,并计算出与对应类别真实区域的重叠度(Iou1,Iou2,Iou3,Iou4),二者相乘便得到置信度。

 YoloV3使用darknet的变体,最初在ImageNet上训练了53层网络,为YOLOV3提供了106层完全卷积的底层架构。yolov3继续沿用了V2的anchor boxes,也是通过聚类的方法得到的。 darknet-53:深度残差网络+多尺度特征预测+FPN上采样,网络越深,检测到的特征越细,效果越好。关于网络结构和yolov3的输出结果不懂的,可以评论区留言。

 

你可能感兴趣的:(基于darknet-53框架的Yolov3实验)