在进行工作池的代码练习时候,我发现了一个有趣的事情,首先看下面一段代码:
package main import "fmt" import "time" func worker(id int, jobs <-chan int, results chan<- int) { for j := range jobs { fmt.Println("worker", id, "processing job", j) time.Sleep(time.Second) results <- j * 2 } } func main() { jobs := make(chan int, 100) results := make(chan int, 100) for w := 1; w <= 3; w++ { go worker(w, jobs, results) } for j := 1; j <= 9; j++ { jobs <- j } close(jobs) for a := 1; a <= 9; a++ { <-results } }
上面代码运行结果是下面这样的,会发现3个工人,平均分配了9个工作,每人有3个
worker 3 processing job 1 worker 2 processing job 3 worker 1 processing job 2 worker 3 processing job 4 worker 1 processing job 5 worker 2 processing job 6 worker 1 processing job 8 worker 2 processing job 7 worker 3 processing job 9
但是,如果将代码改造成下面这样,去掉了工作的时间等待:
package main import "fmt" func worker(id int, jobs <-chan int, results chan<- int) { for j := range jobs { fmt.Printf("I am %d working at jobs %d\n", id, j) results <- j * 2 } } func main() { jobs := make(chan int, 10) results := make(chan int, 10) for i := 1; i < 4; i++ { go worker(i, jobs, results) } for k := 1; k < 10; k++ { jobs <- k } for v := 1; v < 10; v++ { <-results } }
那么运行结果变成了下面这样:
I am 3 working at jobs 1 I am 3 working at jobs 4 I am 3 working at jobs 5 I am 3 working at jobs 6 I am 3 working at jobs 7 I am 3 working at jobs 8 I am 3 working at jobs 9 I am 1 working at jobs 2 I am 2 working at jobs 3
你会发现,第三个工人做了9件工作里面的7件,剩余两个工人闲下来了。经过代码的分析发现,这个例子的逻辑是,先将9件工作全部放在jobs通道中,然后再由工人从jobs通道里取任务,做完后返回结果。但是如果某个工人做的快,还没等剩余的工人取任务时候就完成了,那他就会做很多工作,如果在实际开发中,不考虑类似问题的话,会造成性能浪费,任务分配不平均的问题
经过思考,我决定改变任务分配方式,不能一股脑的将任务全部分配下去,应该做完一件,再分配一件,这样来避免任务分配问题,我在代码中,增加了一个isTrue通道,当第一个任务做完后,将结果发送给isTrue通道,然后任务分配方拿到isTrue里的值后再分配下一个任务,改造后的代码如下:
package main import "fmt" func worker(id int, jobs <-chan int, results chan<- int, isTrue chan<- bool) { for j := range jobs { fmt.Printf("I am %d working at jobs %d\n", id, j) results <- j * 2 isTrue <- true } } func main() { jobs := make(chan int, 10) results := make(chan int, 10) isTrue := make(chan bool) for i := 1; i < 4; i++ { go worker(i, jobs, results, isTrue) } for k := 1; k < 10; k++ { jobs <- k <-isTrue } for v := 1; v < 10; v++ { <-results } }
代码运行结果如下:
I am 3 working at jobs 1 I am 1 working at jobs 2 I am 2 working at jobs 3 I am 3 working at jobs 4 I am 1 working at jobs 5 I am 2 working at jobs 6 I am 3 working at jobs 7 I am 1 working at jobs 8 I am 2 working at jobs 9
以上就解决了任务分配问题。当然,我这种方式还是有缺点的,因为增加了分配任务的时间,会让任务完成总时间增大,在实际业务中,肯定还会有更加完美的解决方案