在讲具体的分类和聚类算法之前,有必要讲一下什么是分类,什么是聚类,以及都包含哪些具体算法或问题。
常见的分类与聚类算法
所谓分类分类,简单来说,就是根据文本的特征或属性,划分到已有的类别中。如在自然语言处理NLP中,我们经常提到的文本分类便就是一个分类问题,一般的模式分类方法都可用于文本分类研究。常用的分类算法包括:决策树分类法,朴素的贝叶斯分类算法(native Bayesian classifier)、基于支持向量机(SVM)的分类器,神经网络法,k-最近邻法(k-nearest neighbor,kNN),模糊分类法等等。
分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,这时候可以考虑使用聚类算法。
而K均值(K-means clustering)聚类则是最典型的聚类算法(当然,除此之外,还有很多诸如属于划分法K-MEDOIDS算法、CLARANS算法;属于层次法的BIRCH算法、CURE算法、CHAMELEON算法等;基于密度的方法:DBSCAN算法、OPTICS算法、DENCLUE算法等;基于网格的方法:STING算法、CLIQUE算法、WAVE-CLUSTER算法)。
咱们直接切入正题。所谓决策树,顾名思义,是一种树,一种依托于策略抉择而建立起来的树。
机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。
从数据产生决策树的机器学习技术叫做决策树学习, 通俗点说就是决策树,说白了,这是一种依托于分类、训练上的预测树,根据已知预测、归类未来。
来理论的太过抽象,下面举两个浅显易懂的例子:
第一个例子
套用俗语,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话:
女儿:多大年纪了?
母亲:26。
女儿:长的帅不帅?
母亲:挺帅的。
女儿:收入高不?
母亲:不算很高,中等情况。
女儿:是公务员不?
母亲:是,在税务局上班呢。
女儿:那好,我去见见。
这个女孩的决策过程就是典型的分类树决策。相当于通过年龄、长相、收入和是否公务员对将男人分为两个类别:见和不见。假设这个女孩对男人的要求是:30岁以下、长相中等以上并且是高收入者或中等以上收入的公务员,那么这个可以用下图表示女孩的决策逻辑:
也就是说,决策树的简单策略就是,好比公司招聘面试过程中筛选一个人的简历,如果你的条件相当好比如说某985/211重点大学博士毕业,那么二话不说,直接叫过来面试,如果非重点大学毕业,但实际项目经验丰富,那么也要考虑叫过来面试一下,即所谓具体情况具体分析、决策。但每一个未知的选项都是可以归类到已有的分类类别中的。
ID3算法是决策树算法的一种。想了解什么是ID3算法之前,我们得先明白一个概念:奥卡姆剃刀。
OK,从信息论知识中我们知道,期望信息越小,信息增益越大,从而纯度越高。ID3算法的核心思想就是以信息增益度量属性选择,选择分裂后信息增益(很快,由下文你就会知道信息增益又是怎么一回事)最大的属性进行分裂。该算法采用自顶向下的贪婪搜索遍历可能的决策树空间。
所以,ID3的思想便是:
这形成了对合格决策树的贪婪搜索,也就是算法从不回溯重新考虑以前的选择。
下图所示即是用于学习布尔函数的ID3算法概要:
为了精确地定义信息增益,我们先定义信息论中广泛使用的一个度量标准,称为熵(entropy),它刻画了任意样例集的纯度(purity)。
设D为用类别对训练元组进行的划分,则D的熵(entropy)表示为:
其中pi表示第i个类别在整个训练元组中出现的概率,可以用属于此类别元素的数量除以训练元组元素总数量作为估计。熵的实际意义表示是D中元组的类标号所需要的平均信息量。
2、信息增益度量期望的熵降低
信息增益Gain(S,A)定义
已经有了熵作为衡量训练样例集合纯度的标准,现在可以定义属性分类训练数据的效力的度量标准。这个标准被称为“信息增益(information gain)”。简单的说,一个属性的信息增益就是由于使用这个属性分割样例而导致的期望熵降低(或者说,样本按照某属性划分时造成熵减少的期望)
现在我们假设将训练元组D按属性A进行划分,则A对D划分的期望信息为:
而信息增益即为两者的差值:
ID3算法就是在每次需要分裂时,计算每个属性的增益率,然后选择增益率最大的属性进行分裂。下面我们继续用SNS社区中不真实账号检测的例子说明如何使用ID3算法构造决策树。为了简单起见,我们假设训练集合包含10个元素:
其中s、m和l分别表示小、中和大。
设L、F、H和R表示日志密度、好友密度、是否使用真实头像和账号是否真实,下面计算各属性的信息增益。
因此日志密度的信息增益是0.276。
用同样方法得到H和F的信息增益分别为0.033和0.553。
因为F具有最大的信息增益,所以第一次分裂选择F为分裂属性,分裂后的结果如下图表示:
在上图的基础上,再递归使用这个方法计算
子节点的分裂属性,最终就可以得到整个决策树。
上面为了简便,将特征属性离散化了,其实日志密度和好友密度都是连续的属性。对于特征属性为连续值,可以如此使用ID3算法:
选择具有最高信息增益(或最大熵压缩)的属性作为当前节点的测试属性,该节点能够使得对结果划分中的样本所需的信息量最小,并反应划分的最小随机性或“不纯性”。这种方法使得对一个对象分类所需的期望册数数目达到最小,并确保找到一颗简单的(但不必是最简单的)树。
C4.5,是机器学习算法中的另一个分类决策树算法,它是决策树(决策树也就是做决策的节点间的组织方式像一棵树,其实是一个倒树)核心算法,也是上文1.2节所介绍的ID3的改进算法,所以基本上了解了一半决策树构造方法就能构造它。
决策树构造方法其实就是每次选择一个好的特征以及分裂点作为当前节点的分类条件。
既然说C4.5算法是ID3的改进算法,那么C4.5相比于ID3改进的地方有哪些呢?:
针对上述第一点,解释下:一般来说率就是用来取平衡用的,就像方差起的作用差不多,比如有两个跑步的人,一个起点是10m/s的人、其10s后为20m/s;另一个人起速是1m/s、其1s后为2m/s。如果紧紧算差值那么两个差距就很大了,如果使用速度增加率(加速度,即都是为1m/s^2)来衡量,2个人就是一样的加速度。因此,C4.5克服了ID3用信息增益选择属性时偏向选择取值多的属性的不足。
C4.5算法之信息增益率
OK,既然上文中提到C4.5用的是信息增益率,那增益率的具体是如何定义的呢?:
是的,在这里,C4.5算法不再是通过信息增益来选择决策属性。一个可以选择的度量标准是增益比率gain ratio(Quinlan 1986)。增益比率度量是用前面的增益度量Gain(S,A)和分裂信息度量SplitInformation(S,A)来共同定义的,如下所示:
其中,分裂信息度量被定义为( 分裂信息用来衡量属性分裂数据的广度和均匀):
其中S1到Sc是c个值的属性A分割S而形成的c个样例子集。注意分裂信息实际上就是S关于属性A的各值的熵。这与我们前面对熵的使用不同,在那里我们只考虑S关于学习到的树要预测的目标属性的值的熵。
请注意,分裂信息项阻碍选择值为均匀分布的属性。例如,考虑一个含有n个样例的集合被属性A彻底分割(译注:分成n组,即一个样例一组)。这时分裂信息的值为log2n。相反,一个布尔属性B分割同样的n个实例,如果恰好平分两半,那么分裂信息是1。如果属性A和B产生同样的信息增益,那么根据增益比率度量,明显B会得分更高。
使用增益比率代替增益来选择属性产生的一个实际问题是,当某个Si接近S(|Si|?|S|)时分母可能为0或非常小。如果某个属性对于S的所有样例有几乎同样的值,这时要么导致增益比率未定义,要么是增益比率非常大。为了避免选择这种属性,我们可以采用这样一些启发式规则,比如先计算每个属性的增益,然后仅对那些增益高过平均值的属性应用增益比率测试(Quinlan 1986)。
除了信息增益,Lopez de Mantaras(1991)介绍了另一种直接针对上述问题而设计的度量,它是基于距离的(distance-based)。这个度量标准基于所定义的一个数据划分间的距离尺度。具体更多请参看:Tom M.Mitchhell所著的机器学习之3.7.3节。
1.3.2、C4.5算法构造决策树的过程
参考:http://www.cnblogs.com/leoo2sk/archive/2010/09/19/decision-tree.html