是指从已有的M个特征中选择N个特征使得系统的特定指标最优化,是从原始特征中选择出一些最有效特征以降低数据集维度的过程,是提高学习算法性能的一个重要手段,也是模式识别中关键的数据预处理步骤。
搜索起点和方向;搜索策略;特征评估函数;停止准则
是搜索特征子集的过程,负责为评价函数提供特征子集。
是评价一个特征子集好坏程度的一个准则。
是一个阈值,当评价函数达到这个阈值后就可停止搜索。
在验证数据集上验证选出来的特征子集的有效性。
先对数据集进行特征选择,然后再训练学习器,特征选择过程与后续学习器无关。e.g.Relief
直接把最终将要使用的学习器的性能作为特征子集的评价依据。e.g.LVW(Las Vegas Wrapper)
将特征选择过程与学习器训练过程融为一体,两者在同一个优化过程中完成。e.g. L1正则化
尽可能保持数据原貌的前提下,最大限度地精简数据量。
减少所考虑的随机变量或属性的个数。e.g.小波变换、主成分分析
用替代的、较小的数据表示形式换原始数据。这些技术可以是参数或者非参数的。对于参数方法而言,使用模型估计数据,使得一般只需要存放模型参数而不是实际数据(离群点需存放)。非参数方法包括:直方图、聚类、抽样和数据立方体聚类。
使用变换,一遍得到原始数据的归约或“压缩”表示。如果数据可以在压缩后的数据重构,而不损失信息,则该数据归约被称为无损的。如果是近似重构原数据,称为有损的。
是反映一个事物与其他事物之间的相互依存性和关联性,是数据挖掘的一个重要技术,用于从大量数据中挖掘出有价值的数据项之间的相关关系。e.g.购物篮分析
该过程通过发现顾客放人其购物篮中的不同商品之间的联系,分析顾客的购买习惯。通过了解哪些商品频繁地被顾客同时购买,这种关联的发现可以帮助零售商制定营销策略。其他的应用还包括价目表设计、商品促销、商品的排放和基于购买模式的顾客划分。
在选择规则时通常会对这两个值设一个最低阈值最小支持度 min s u p \min_{sup} minsup和最小置信度 min c o n f \min_{conf} minconf。注意由关联规则分析得出来的关联规则并不保证具有因果关系。
项集被定义为包含个或多个项的集合,支持度大于阈值的项集被称为频繁项集,频繁项集中置信度大于阈值的规则称为强规则。
关联规则的目的就是找到频繁项集与强规则。
即两个事件同时发生的概率,表示同时购买X、Y的订单数占总订单数的比例 s u p p o r t ( X , Y ) = P ( X Y ) P ( a l l ) support(X,Y)=\frac{P(XY)}{P(all)} support(X,Y)=P(all)P(XY)
即在前因发生的条件下,后果发生的概率。表示购买X的订单中同时购买Y的比例,即同时购买X和Y的订单数占购买X的订单的比例。
C o n f i d e n c e ( X − > Y ) = P ( X Y ) P ( X ) Confidence(X−>Y)=\frac{P(XY)}{P(X)} Confidence(X−>Y)=P(X)P(XY)
C o n f i d e n c e ( Y − > X ) = P ( X Y ) P ( Y ) Confidence(Y−>X)=\frac{P(XY)}{P(Y)} Confidence(Y−>X)=P(Y)P(XY)
L i f t ( Y − > X ) = P ( X Y ) P ( X ) P ( Y ) = = P ( Y / X ) P ( Y ) Lift(Y−>X)=\frac{P(XY)}{P(X)P(Y)}==\frac{P(Y/X)}{P(Y)} Lift(Y−>X)=P(X)P(Y)P(XY)==P(Y)P(Y/X)
提升度反映了关联规则中的X重点内容与Y的相关性:
**Apriori实现过程:**首先,找出所有的频繁项集,再从频繁项集中找出符合最小置信度的项集,最终便得到有强规则的项集(即我们所需的项的关联性)。
**(1)**首先计算出所有的频繁项集,这里最小支持度为0.2
**(2)**得出L1、L2、L3的各个项集均为频繁项集,再进行计算每个频繁项集的置信度,其中L1不必计算。计算结果如下
如果一个集合是频繁项集,则它的所有子集都是频繁项集。e.g.假设一个集合{A,B}是频繁项集,即A、B同时出现在一条记录的次数大于等于最小支持度min_support,则它的子集{A},{B}出现次数必定大于等于min_support,即它的子集都是频繁项集。
如果一个集合不是频繁项集,则它的所有超集都不是频繁项集。e.g.假设集合{A}不是频繁项集,即A出现的次数小于 min_support,则它的任何超集如{A,B}出现的次数必定小于min_support,因此其超集必定也不是频繁项集。
from numpy import *
# 构造数据
def loadDataSet():
return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]
# 将所有元素转换为frozenset型字典,存放到列表中
def createC1(dataSet):
C1 = []
for transaction in dataSet:
for item in transaction:
if not [item] in C1:
C1.append([item])
C1.sort()
# 使用frozenset是为了后面可以将这些值作为字典的键
return list(map(frozenset, C1)) # frozenset一种不可变的集合,set可变集合
# 过滤掉不符合支持度的集合
# 返回 频繁项集列表retList 所有元素的支持度字典
def scanD(D, Ck, minSupport):
ssCnt = {}
for tid in D:
for can in Ck:
if can.issubset(tid): # 判断can是否是tid的《子集》 (这里使用子集的方式来判断两者的关系)
if can not in ssCnt: # 统计该值在整个记录中满足子集的次数(以字典的形式记录,frozenset为键)
ssCnt[can] = 1
else:
ssCnt[can] += 1
numItems = float(len(D))
retList = [] # 重新记录满足条件的数据值(即支持度大于阈值的数据)
supportData = {} # 每个数据值的支持度
for key in ssCnt:
support = ssCnt[key] / numItems
if support >= minSupport:
retList.insert(0, key)
supportData[key] = support
return retList, supportData # 排除不符合支持度元素后的元素 每个元素支持度
# 生成所有可以组合的集合
# 频繁项集列表Lk 项集元素个数k [frozenset({2, 3}), frozenset({3, 5})] -> [frozenset({2, 3, 5})]
def aprioriGen(Lk, k):
retList = []
lenLk = len(Lk)
for i in range(lenLk): # 两层循环比较Lk中的每个元素与其它元素
for j in range(i+1, lenLk):
L1 = list(Lk[i])[:k-2] # 将集合转为list后取值
L2 = list(Lk[j])[:k-2]
L1.sort(); L2.sort() # 这里说明一下:该函数每次比较两个list的前k-2个元素,如果相同则求并集得到k个元素的集合
if L1==L2:
retList.append(Lk[i] | Lk[j]) # 求并集
return retList # 返回频繁项集列表Ck
# 封装所有步骤的函数
# 返回 所有满足大于阈值的组合 集合支持度列表
def apriori(dataSet, minSupport = 0.5):
D = list(map(set, dataSet)) # 转换列表记录为字典 [{1, 3, 4}, {2, 3, 5}, {1, 2, 3, 5}, {2, 5}]
C1 = createC1(dataSet) # 将每个元素转会为frozenset字典 [frozenset({1}), frozenset({2}), frozenset({3}), frozenset({4}), frozenset({5})]
L1, supportData = scanD(D, C1, minSupport) # 过滤数据
L = [L1]
k = 2
while (len(L[k-2]) > 0): # 若仍有满足支持度的集合则继续做关联分析
Ck = aprioriGen(L[k-2], k) # Ck候选频繁项集
Lk, supK = scanD(D, Ck, minSupport) # Lk频繁项集
supportData.update(supK) # 更新字典(把新出现的集合:支持度加入到supportData中)
L.append(Lk)
k += 1 # 每次新组合的元素都只增加了一个,所以k也+1(k表示元素个数)
return L, supportData
dataSet = loadDataSet()
L,suppData = apriori(dataSet)
print(L)
print(suppData)
# 获取关联规则的封装函数
def generateRules(L, supportData, minConf=0.7): # supportData 是一个字典
bigRuleList = []
for i in range(1, len(L)): # 从为2个元素的集合开始
for freqSet in L[i]:
# 只包含单个元素的集合列表
H1 = [frozenset([item]) for item in freqSet] # frozenset({2, 3}) 转换为 [frozenset({2}), frozenset({3})]
# 如果集合元素大于2个,则需要处理才能获得规则
if (i > 1):
rulesFromConseq(freqSet, H1, supportData, bigRuleList, minConf) # 集合元素 集合拆分后的列表 。。。
else:
calcConf(freqSet, H1, supportData, bigRuleList, minConf)
return bigRuleList
# 对规则进行评估 获得满足最小可信度的关联规则
def calcConf(freqSet, H, supportData, brl, minConf=0.7):
prunedH = [] # 创建一个新的列表去返回
for conseq in H:
conf = supportData[freqSet]/supportData[freqSet-conseq] # 计算置信度
if conf >= minConf:
print(freqSet-conseq,'-->',conseq,'conf:',conf)
brl.append((freqSet-conseq, conseq, conf))
prunedH.append(conseq)
return prunedH
# 生成候选规则集合
def rulesFromConseq(freqSet, H, supportData, brl, minConf=0.7):
m = len(H[0])
if (len(freqSet) > (m + 1)): # 尝试进一步合并
Hmp1 = aprioriGen(H, m+1) # 将单个集合元素两两合并
Hmp1 = calcConf(freqSet, Hmp1, supportData, brl, minConf)
if (len(Hmp1) > 1): #need at least two sets to merge
rulesFromConseq(freqSet, Hmp1, supportData, brl, minConf)
dataSet = loadDataSet()
L,suppData = apriori(dataSet,minSupport=0.5)
rules = generateRules(L,suppData,minConf=0.7)
# rules = generateRules(L,suppData,minConf=0.5)
print(rules)
FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。算法只需扫描原始数据 两 {\color{Red}两} 两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。
主要分为两个步骤:FP-tree构建、挖掘频繁项集。
1)扫描数据,得到所有频繁一项集的的计数。然后删除支持度低于阈值的项,将1项频繁集放入项头表,并按照支持度降序排列。
2)扫描数据,将读到的原始数据剔除非频繁1项集,并按照支持度降序排列。
3)读入排序后的数据集,插入FP树,插入时按照排序后的顺序,插入FP树中,排序靠前的节点是祖先节点,而靠后的是子孙节点。如果有共用的祖先,则对应的公用祖先节点计数加1。插入后,如果有新节点出现,则项头表对应的节点会通过节点链表链接上新节点。直到所有的数据都插入到FP树后,FP树的建立完成。
4)从项头表的底部项依次向上找到项头表项对应的条件模式基。从条件模式基递归挖掘得到项头表项项的频繁项集。
5)如果不限制频繁项集的项数,则返回步骤4所有的频繁项集,否则只返回满足项数要求的频繁项集。
1、项头表
第一次扫描数据,得到所有频繁一项集的的计数。然后删除支持度低于阈值的项,将1项频繁集放入项头表,并按照支持度降序排列。接着第二次扫描数据,将读到的原始数据剔除非频繁1项集,并按照支持度降序排列。
2、FP Tree
3、节点链表
得到了FP树和项头表以及节点链表,首先要从项头表的底部项依次向上挖掘。对于项头表对应于FP树的每一项,我们要找到它的条件模式基。所谓条件模式基是以我们要挖掘的节点作为叶子节点所对应的FP子树。得到这个FP子树,将子树中每个节点的的计数设置为叶子节点的计数,并删除计数低于支持度的节点。从这个条件模式基,我们就可以递归挖掘得到频繁项集了。
先从最底下的F节点开始,寻找F节点的条件模式基,由于F在FP树中只有一个节点,因此候选就只有下图左所示的一条路径,对应{A:8,C:8,E:6,B:2, F:2}。接着将所有的祖先节点计数设置为叶子节点的计数,即FP子树变成{A:2,C:2,E:2,B:2, F:2}。一般我们的条件模式基可以不写叶子节点,因此最终的F的条件模式基如下图右所示。
通过它很容易得到F的频繁2项集为{A:2,F:2}, {C:2,F:2}, {E:2,F:2}, {B:2,F:2}。递归合并二项集,得到频繁三项集为{A:2,C:2,F:2},{A:2,E:2,F:2},…还有一些频繁三项集,就不写了。当然一直递归下去,最大的频繁项集为频繁5项集,为{A:2,C:2,E:2,B:2,F:2}。
F挖掘完了,我们开始挖掘D节点。D节点比F节点复杂一些,因为它有两个叶子节点,因此首先得到的FP子树如下图左。接着将所有的祖先节点计数设置为叶子节点的计数,即变成{A:2, C:2,E:1 G:1,D:1, D:1}此时E节点和G节点由于在条件模式基里面的支持度低于阈值,被我们删除,最终在去除低支持度节点并不包括叶子节点后D的条件模式基为{A:2, C:2}。通过它,我们很容易得到D的频繁2项集为{A:2,D:2}, {C:2,D:2}。递归合并二项集,得到频繁三项集为{A:2,C:2,D:2}。D对应的最大的频繁项集为频繁3项集。
同样的方法可以得到B的条件模式基如下图右边,递归挖掘到B的最大频繁项集为频繁4项集{A:2, C:2, E:2,B:2}。
继续挖掘G的频繁项集,挖掘到的G的条件模式基如下图右边,递归挖掘到G的最大频繁项集为频繁4项集{A:5, C:5, E:4,G:4}。
E的条件模式基如下图右边,递归挖掘到E的最大频繁项集为频繁3项集{A:6, C:6, E:6}。
C的条件模式基如下图右边,递归挖掘到C的最大频繁项集为频繁2项集{A:8, C:8}。
至于A,由于它的条件模式基为空,因此可以不用去挖掘了。
FP Tree算法改进了Apriori算法的I/O瓶颈,巧妙的利用了树结构,这让我们想起了BIRCH聚类,BIRCH聚类也是巧妙的利用了树结构来提高算法运行速度。利用内存数据结构以空间换时间是常用的提高算法运行时间瓶颈的办法。在实践中,FP Tree算法是可以用于生产环境的关联算法,而Apriori算法则做为先驱,起着关联算法指明灯的作用。除了FP Tree,像GSP,CBA之类的算法都是Apriori派系的。