通过消失点测量摄像头与平行线夹角

原理:

现实中平行的直线会在照片中交于一点(完全水平的除外),通过该交点和摄像机位置的连线即可确定摄像头偏离平行线的夹角,可以参考修改为检测小车航线角(偏离车道线的夹角)。

通过消失点测量摄像头与平行线夹角_第1张图片
效果图:
通过消失点测量摄像头与平行线夹角_第2张图片

第一版程序(有bug)

/**************************************************************************************
通过消失点测量 :航向角
****************************************************************************************/


#pragma warning(disable:4996)

#include   
#include   
#include   
#include  
#include 
#include "windows.h"  
#include "fstream" 

//opencv相关
#include   
#include 
#include   
#include   
#include   
#include   
#include   
#include   
#include //hog特征的c文件

//自己编写的文件
#include "UART.h"
#include "findline.h"
#include "DrawImage.h"//绘制图形
#include "Manipulator_positioning.h" //棋子挡板识别及定位
#include "Number.h"
#include "Locate.h"

using namespace std;
using namespace cv;
using namespace cv::ml;

RNG rng(12345);

using namespace cv;
using namespace std;

RNG g_rng(12345);

/*函数功能:求两条直线交点*/
/*输入:两条Vec4i类型直线*/
/*返回:Point2f类型的点*/
Point2f getCrossPoint(Vec4i LineA, Vec4i LineB)
{
    double ka, kb;
    ka = (double)(LineA[3] - LineA[1]) / (double)(LineA[2] - LineA[0]); //求出LineA斜率
    kb = (double)(LineB[3] - LineB[1]) / (double)(LineB[2] - LineB[0]); //求出LineB斜率

    Point2f crossPoint;
    crossPoint.x = (ka*LineA[0] - LineA[1] - kb*LineB[0] + LineB[1]) / (ka - kb);
    crossPoint.y = (ka*kb*(LineA[0] - LineB[0]) + ka*LineB[1] - kb*LineA[1]) / (ka - kb);
    return crossPoint;
}

//输入一堆直线,返回每条直线与水平直线的角度,
//aaa为0则为弧度,反之则为角度
vector <float> get_lines_arctan(vector lines,int aaa)
{
    if (aaa == 0)
    {
     float k = 0; //直线斜率
        vector <float> lines_arctan;//直线斜率的反正切值
        for (unsigned int i = 0; idouble)(lines[i][3] - lines[i][1]) / (double)(lines[i][2] - lines[i][0]); //求出直线的斜率
            lines_arctan.push_back(atan(k));
        }
        return lines_arctan;
    }
    else
    {
        float k = 0; //直线斜率
        vector <float> lines_arctan;//直线斜率的反正切值
        for (unsigned int i = 0; idouble)(lines[i][3] - lines[i][1]) / (double)(lines[i][2] - lines[i][0]); //求出直线的斜率
            lines_arctan.push_back((double)atan(k)* (double)180.0 / (double)3.1415926);
        }
        return lines_arctan;
    }
}

//输入一堆直线,返回每条直线的斜率和截距
//Vec2f为2个点的float,参照存储直线的数据结构
vector  get_lines_fangcheng(vector lines)
{
    float k = 0; //直线斜率
    float b = 0; //直线截距
    vector  lines_fangcheng;//直线斜率的反正切值

    for (unsigned int i = 0; idouble)(lines[i][3] - lines[i][1]) / (double)(lines[i][2] - lines[i][0]); //求出直线的斜率// -3.1415926/2-----+3.1415926/2
        b = (double)lines[i][1] - k * (double)lines[i][0]; //求出直线的斜率
        lines_fangcheng.push_back(Point2f(k,b));
    }

    return lines_fangcheng;
}

//原点到直线的距离
//输入一堆直线,返回直线到坐标原点的距离
vector <float> get_0_distance(vector lines)
{
    vector <float> diatance;

    for (unsigned int i = 0; i < lines.size(); i++)
    {                   
        double k = (double)(lines[i][1] - lines[i][3]) / (double)(lines[i][0] - lines[i][2]);//斜率
        double b = (double)lines[i][1] - (double)(lines[i][0])* k; //截距
        double diatance_temp = fabs(b / sqrt(1 + k*k)); 
        diatance.push_back(diatance_temp);
    }
    return diatance;

}


/***** 冒泡排序*****/
//输入一堆直线,按斜率排序,返回排序好的直线
vector Pai_xu(vector lines)
{ 
    vector<float> lines_temp;
    float t1;
    lines_temp = get_lines_arctan(lines, 1);
    Vec4i t;
    printf("此程序使用冒泡排序法排列无序数列!\n");

    //冒泡排序  
    for (int i = 0; i1; i++)//n个数的数列总共扫描n-1次  
    {
        for (int j = 0; j1; j++)//每一趟扫描到a[n-i-2]与a[n-i-1]比较为止结束  
        {
            if (lines_temp[j]1])//后一位数比前一位数大的话,就交换两个数的位置(降序)  
            {
                t=lines[j + 1];
                t1 = lines_temp[j + 1];

                lines[j + 1] = lines[j];
                lines_temp[j + 1] = lines_temp[j];

                lines[j] = t;
                lines_temp[j] = t1;
            }
        }   
    }
    return lines;
}





//-----------------------------------【main( )函数】--------------------------------------------
//      描述:控制台应用程序的入口函数,我们的程序从这里开始
//-----------------------------------------------------------------------------------------------
int main()
{   
    //【1】载入原始图和Mat变量定义   
    Mat srcImage = imread("11.jpg");  //工程目录下应该有一张名为1.jpg的素材图
    Mat midImage, dstImage;//临时变量和目标图的定义

    //彩色转灰度
    cv::cvtColor(srcImage, srcImage, CV_BGR2GRAY);
    cv::namedWindow("灰度化", 0);
    imshow("灰度化", srcImage);

    //二值化
    threshold(srcImage, srcImage, 150, 255, THRESH_BINARY);
    cv::namedWindow("二值化", 0);
    imshow("二值化", srcImage);
    //模糊
    cv::blur(srcImage, srcImage, cv::Size(3, 3));
    cv::namedWindow("模糊", 0);
    imshow("模糊", srcImage);

    /*******  检测直线优化 开始 ****************************************************************/
     int cannyThreshold = 80;
    float factor = 2.5;


    vector lines;//定义一个矢量结构lines用于存放得到的线段矢量集合
    //HoughLinesP(midImage, lines, 1, CV_PI / 180, 320, 240, 30);
    Canny(srcImage, midImage, cannyThreshold, cannyThreshold * factor);
    HoughLinesP(midImage, lines, 1, CV_PI / 180, 300, 200, 50);
    //最多的直线
    while (lines.size() >= 16)
    {
        cannyThreshold += 2;
        Canny(srcImage, midImage, cannyThreshold, cannyThreshold * factor);


        HoughLinesP(midImage, lines, 1, CV_PI / 180, 50, 100, 100);
    }
    //最少的直线
    while (lines.size() <= 10)
    {
        cannyThreshold -= 2;
        Canny(srcImage, midImage, cannyThreshold, cannyThreshold * factor);
        HoughLinesP(midImage, lines, 1, CV_PI / 180, 300, 200, 50);
    }

    cout << "canny边缘检测阈值为:" << cannyThreshold << endl;

    Canny(srcImage, midImage,cannyThreshold,cannyThreshold * factor);
    HoughLinesP(midImage, lines, 1, CV_PI / 180, 300, 200, 50);

    /*******  检测直线优化 结束 ****************************************************************/




    //【2】进行边缘检测和转化为灰度图
//  Canny(srcImage, midImage, 50, 200, 3);//进行一此canny边缘检测

    cvtColor(midImage, dstImage, COLOR_GRAY2BGR);//转化边缘检测后的图为灰度图

    //【3】进行霍夫线变换
    //vector lines;//定义一个矢量结构lines用于存放得到的线段矢量集合
    //HoughLinesP(midImage, lines, 1, CV_PI / 180, 320, 240, 30);

    printf("\n\n\t\t\t   当前使用的OpenCV版本为" CV_VERSION);
    cout << "\n共检测到原始  直线" << lines.size() << "条" << endl;


    //这里是将检测的线调整到延长至全屏,即射线的效果,其实可以不必这么做 
    for (unsigned int i = 0; i0] = 0;
        lines[i][1] = ((float)v[1] - v[3]) / (v[0] - v[2])* -v[0] + v[1];
        lines[i][2] = midImage.cols;
        lines[i][3] = ((float)v[1] - v[3]) / (v[0] - v[2])*(midImage.cols - v[2]) + v[3];
    }

    //【4】依次在图中绘制出每条线段
    for (size_t i = 0; i < lines.size(); i++)
    {
        Vec4i l = lines[i];
        //此句代码的OpenCV2版为:
        //line( dstImage, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(186,88,255), 1, CV_AA);
        //此句代码的OpenCV3版为:
        line(dstImage, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0, 0, 255), 1, LINE_AA);
    }

    //显示每条直线的角度
    vector <float> lines_arctan;//直线斜率的反正切值,即角度
    lines_arctan = get_lines_arctan(lines,0);//0为弧度,1为角度

    for (unsigned int i = 0; i < lines.size(); i++)
    {
        cout << "检测到的直线弧度" << lines_arctan[i] << endl;
        cout << "检测到的直线角度为:" << lines_arctan[i] *180.0/3.1415926<< endl;
    }

    //显示每条直线的方程
    vector  lines_fangcheng;//直线斜率的反正切值
    lines_fangcheng = get_lines_fangcheng(lines);

    for (unsigned int i = 0; i < lines.size(); i++)
    {
        cout << "\n" << endl;
        cout << "检测到的直线斜率为" << lines_fangcheng[i].x << endl;
        cout << "检测到的直线截距为:" << lines_fangcheng[i].y<< endl;
    }

    /****************确定自己在哪两条直线中间,并把这两条直线找出来   开始 *********************************************************************/

    vector lines_1;//排序后的数组
    vector lines_2;//两个斜率最大的直线
    printf("此程序使用冒泡排序法排列无序数列!\n");
    lines_1 = Pai_xu(lines);//按斜率排序

    vector <float> lines_arctan1;//直线斜率的反正切值,即角度
    lines_arctan1 = get_lines_arctan(lines_1, 1);//0为弧度,1为角度


    printf("排列好的直线斜率是:\n");
        //输出排列好的数列  
    for (int i = 0; icout << "检测到的直线斜率为:" << lines_arctan1[i]<< " 度"<0]);
        lines_2.push_back(lines_1[lines_1.size()-1]);
        for (int i = 0; i < lines_2.size(); i++)
        {
            line(dstImage, Point(lines_2[i][0], lines_2[i][1]), Point(lines_2[i][2], lines_2[i][3]), Scalar(255, 0,0), 2, LINE_AA);
        }



    /****************确定自己在哪两条直线中间,并把这两条直线找出来  结束 *********************************************************************/



    /****************找到消失点  开始 *********************************************************************/

        Point2f Xiaoshidian;//线的交点存储  
        Xiaoshidian = getCrossPoint(lines_2[0], lines_2[1]);//消失点
        float H1 = 44.0;//摄像头高度
        float Dmin = 25;//最短距离
        float Dmax = 250;//最长距离
        float D1 = 29.8;//摄像头坐标与水平面线交点差值

        float Alpha;//俯仰角Αα:阿尔法 Alpha
        float Theta;//垂直视场角 西塔 Theta

        Alpha = atan(Dmin / H1);//俯仰角
        Theta = atan(Dmax / H1) - Alpha;//垂直视场角
        //视场中轴线
        line(dstImage, Point(dstImage.cols / 2,0 ), Point(dstImage.cols / 2, dstImage.rows), Scalar(255, 0, 0), 3, LINE_AA);

        //与直线平行的地方
        line(dstImage, Point(Xiaoshidian.x, Xiaoshidian.y), Point(dstImage.cols / 2, dstImage.rows*(1 + Alpha / Theta)), Scalar(255, 0, 255), 3, LINE_AA);






    /****************找到消失点  开始 *********************************************************************/





    vector corners;//线的交点存储  
    for (unsigned int i = 0; ifor (unsigned int j = i + 1; jif (pt.x >= 0 && pt.y >= 0)
            {
                corners.push_back(pt);
            }
        }
    }

    //【4】依次在图中绘制出角点
    for (size_t i = 0; i < corners.size(); i++)
    {
      circle(dstImage, corners[i], 3, CV_RGB(0, 255, 0), 2);
    }
    //【5】显示原始图  
    namedWindow("【原始图】", 0);//参数为零,则可以自由拖动
    imshow("【原始图】", srcImage);

    //【6】边缘检测后的图 
    namedWindow("【边缘检测后的图】", 0);//参数为零,则可以自由拖动
    imshow("【边缘检测后的图】", midImage);

    //【7】显示效果图  
    namedWindow("【效果图】", 0);//参数为零,则可以自由拖动
    imshow("【效果图】", dstImage);

    waitKey(0);

}




第二版程序(优化了很多)8月9日写

通过消失点测量摄像头与平行线夹角_第3张图片

/**************************************************************************************
该程序功能:找航向角,通过消失点找航向角


****************************************************************************************/
/**************************************************************************************
通过消失点测量 :航向角
****************************************************************************************/


#pragma warning(disable:4996)

#include   
#include   
#include   
#include  
#include 
#include "windows.h"  
#include "fstream" 

//opencv相关
#include   
#include 
#include   
#include   
#include   
#include   
#include   
#include   
#include //hog特征的c文件

//自己编写的文件
#include "UART.h"
#include "findline.h"
#include "DrawImage.h"//绘制图形
#include "Manipulator_positioning.h" //棋子挡板识别及定位
#include "Number.h"
#include "Locate.h"

using namespace std;
using namespace cv;
using namespace cv::ml;

RNG rng(12345);

using namespace cv;
using namespace std;

RNG g_rng(12345);

/*函数功能:求两条直线交点*/
/*输入:两条Vec4i类型直线*/
/*返回:Point2f类型的点*/
Point2f getCrossPoint(Vec4i LineA, Vec4i LineB)
{
    double ka, kb;
    Point2f crossPoint;
    if ((LineA[2] - LineA[0]) != 0)
    {
        ka = (double)(LineA[3] - LineA[1]) / (double)(LineA[2] - LineA[0]); //求出LineA斜率
        kb = (double)(LineB[3] - LineB[1]) / (double)(LineB[2] - LineB[0]); //求出LineB斜率


        crossPoint.x = (ka*LineA[0] - LineA[1] - kb*LineB[0] + LineB[1]) / (ka - kb);
        crossPoint.y = (ka*kb*(LineA[0] - LineB[0]) + ka*LineB[1] - kb*LineA[1]) / (ka - kb);
    }


    return crossPoint;
}

//输入一堆直线,返回每条直线与水平直线的角度,
//aaa为0则为弧度,反之则为角度
//
vector <float> get_lines_arctan(vector lines, int aaa)
{
    if (aaa == 0)
    {
        float k = 0; //直线斜率
        vector <float> lines_arctan;//直线斜率的反正切值

        for (unsigned int i = 0; iif ((lines[i][2] - lines[i][0]) != 0)
            {

                k = -(double)(lines[i][3] - lines[i][1]) / (double)(lines[i][2] - lines[i][0]); //求出直线的斜率
                lines_arctan.push_back(atan(k));

            }
            else
            {
                lines_arctan.push_back(8000); //8000表示无穷大
            }
        }
        return lines_arctan;
    }
    else
    {
        float k = 0; //直线斜率
        vector <float> lines_arctan;//直线斜率的反正切值
        for (unsigned int i = 0; iif ((lines[i][2] - lines[i][0]) != 0)
            {
                k = -(double)(lines[i][3] - lines[i][1]) / (double)(lines[i][2] - lines[i][0]); //求出直线的斜率
                lines_arctan.push_back((double)atan(k)* (double)180.0 / (double)3.1415926);
            }
            else
            {
                lines_arctan.push_back(90);
            }       
        }
        return lines_arctan;
    }
}

//输入一堆直线,返回每条直线的斜率和截距
//Vec2f为2个点的float,参照存储直线的数据结构
//如果直线未垂直的话,返回斜率和截距都为8000
vector  get_lines_fangcheng(vector lines)
{
    float k = 0; //直线斜率
    float b = 0; //直线截距
    vector  lines_fangcheng;//直线斜率的反正切值

    for (unsigned int i = 0; iif ((lines[i][2] - lines[i][0]) != 0)
        {
            k = (double)(lines[i][3] - lines[i][1]) / (double)(lines[i][2] - lines[i][0]); //求出直线的斜率// -3.1415926/2-----+3.1415926/2
            b = (double)lines[i][1] - k * (double)lines[i][0]; //求出直线的斜率
            lines_fangcheng.push_back(Point2f(k, b));
        }
        else
        {
            lines_fangcheng.push_back(Point2f(8000, 8000)); //直线未竖直的,则返回斜率和截距都为8000

        }
    }

    return lines_fangcheng;
}

//原点到直线的距离
//输入一堆直线,返回直线到坐标原点的距离
vector <float> get_0_distance(vector lines)
{
    vector <float> diatance;

    for (unsigned int i = 0; i < lines.size(); i++)
    {
        double k = (double)(lines[i][1] - lines[i][3]) / (double)(lines[i][0] - lines[i][2]);//斜率
        double b = (double)lines[i][1] - (double)(lines[i][0])* k; //截距
        double diatance_temp = fabs(b / sqrt(1 + k*k));
        diatance.push_back(diatance_temp);
    }
    return diatance;

}


/***** 冒泡排序*****/
//输入一堆直线,按斜率排序,返回排序好的直线
vector Pai_xu(vector lines)
{
    vector<float> lines_temp;
    float t1;
    lines_temp = get_lines_arctan(lines, 1);
    Vec4i t;

    //冒泡排序  
    for (int i = 0; i1; i++)//n个数的数列总共扫描n-1次  
    {
        for (int j = 0; j1; j++)//每一趟扫描到a[n-i-2]与a[n-i-1]比较为止结束  
        {
            if (lines_temp[j]1])//后一位数比前一位数大的话,就交换两个数的位置(降序)  
            {
                t = lines[j + 1];
                t1 = lines_temp[j + 1];

                lines[j + 1] = lines[j];
                lines_temp[j + 1] = lines_temp[j];

                lines[j] = t;
                lines_temp[j] = t1;
            }
        }
    }
    return lines;
}

//-----------------------------------【main( )函数】--------------------------------------------
//      描述:控制台应用程序的入口函数,我们的程序从这里开始
//-----------------------------------------------------------------------------------------------
int main()
{
    //【1】载入原始图和Mat变量定义   
    Mat srcImage = imread("14.jpg");  //工程目录下应该有一张名为1.jpg的素材图
    Mat midImage, dstImage;//临时变量和目标图的定义

    //彩色转灰度
    cv::cvtColor(srcImage, srcImage, CV_BGR2GRAY);
    cv::namedWindow("灰度化", 0);
    imshow("灰度化", srcImage);

    //二值化
    threshold(srcImage, srcImage, 150, 255, THRESH_BINARY);
    cv::namedWindow("二值化", 0);
    imshow("二值化", srcImage);
    //模糊
    cv::blur(srcImage, srcImage, cv::Size(3, 3));
    cv::namedWindow("模糊", 0);
    imshow("模糊", srcImage);

    /*******  检测直线优化 开始 ****************************************************************/
    int cannyThreshold = 80;
    float factor = 2.5;


    vector lines;//定义一个矢量结构lines用于存放得到的线段矢量集合
    //HoughLinesP(midImage, lines, 1, CV_PI / 180, 320, 240, 30);
    Canny(srcImage, midImage, cannyThreshold, cannyThreshold * factor);
    HoughLinesP(midImage, lines, 1, CV_PI / 180, 260, 100, 100);


    //最多的直线
    //while (lines.size() >= 16)
    //{
    //  cannyThreshold += 2;
    //  Canny(srcImage, midImage, cannyThreshold, cannyThreshold * factor);


    //  HoughLinesP(midImage, lines, 1, CV_PI / 180, 50, 100, 100);
    //}
    ////最少的直线
    //while (lines.size() <= 10)
    //{
    //  cannyThreshold -= 2;
    //  Canny(srcImage, midImage, cannyThreshold, cannyThreshold * factor);
    //  HoughLinesP(midImage, lines, 1, CV_PI / 180, 300, 200, 50);
    //}

    cout << "canny边缘检测阈值为:" << cannyThreshold << endl;

    //Canny(srcImage, midImage, cannyThreshold, cannyThreshold * factor);
    //HoughLinesP(midImage, lines, 1, CV_PI / 180, 300, 200, 50);

    /*******  检测直线优化 结束 ****************************************************************/




    //【2】进行边缘检测和转化为灰度图
    //  Canny(srcImage, midImage, 50, 200, 3);//进行一此canny边缘检测

    cvtColor(midImage, dstImage, COLOR_GRAY2BGR);//转化边缘检测后的图为灰度图

    //【3】进行霍夫线变换 
    //vector lines;//定义一个矢量结构lines用于存放得到的线段矢量集合
    //HoughLinesP(midImage, lines, 1, CV_PI / 180, 320, 240, 30);

    printf("\n\n\t\t\t   当前使用的OpenCV版本为" CV_VERSION);
    cout << "\n共检测到原始  直线" << lines.size() << "条" << endl;


    //这里是将检测的线调整到延长至全屏,即射线的效果,其实可以不必这么做 
    //for (unsigned int i = 0; i
    //{
    //  cv::Vec4i v = lines[i];
    //  lines[i][0] = 0;
    //  lines[i][1] = ((float)v[1] - v[3]) / (v[0] - v[2])* -v[0] + v[1];
    //  lines[i][2] = midImage.cols;
    //  lines[i][3] = ((float)v[1] - v[3]) / (v[0] - v[2])*(midImage.cols - v[2]) + v[3];
    //}

    //【4】依次在图中绘制出每条线段
    for (size_t i = 0; i < lines.size(); i++)
    {
        Vec4i l = lines[i];
        //此句代码的OpenCV2版为:
        //line( dstImage, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(186,88,255), 1, CV_AA);
        //此句代码的OpenCV3版为:
        line(dstImage, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0, 0, 255), 1, LINE_AA);
    }

    //显示每条直线的角度
    vector <float> lines_arctan;//直线斜率的反正切值,即角度
    lines_arctan = get_lines_arctan(lines, 1);//0为弧度,1为角度

    for (unsigned int i = 0; i < lines.size(); i++)
    {
    //  cout << "检测到的直线弧度" << lines_arctan[i] << endl;
        cout << "检测到的直线角度为:" << lines_arctan[i] << endl;
    }

    //显示每条直线的方程
    //vector  lines_fangcheng;//直线斜率的反正切值
    //lines_fangcheng = get_lines_fangcheng(lines);

    //for (unsigned int i = 0; i < lines.size(); i++)
    //{
    //  cout << "\n" << endl;
    //  cout << "检测到的直线斜率为" << lines_fangcheng[i].x << endl;
    //  cout << "检测到的直线截距为:" << lines_fangcheng[i].y << endl;
    //}

    /****************确定自己在哪两条直线中间,并把这两条直线找出来   开始 *********************************************************************/

    vector lines_1;//排序后的数组
    vector lines_2;//滤除小于45度的直线
    vector lines_3;//两个斜率最大的直线
    printf("此程序使用冒泡排序法排列无序数列!\n");
    lines_1 = Pai_xu(lines);//按斜率排序

    vector <float> lines_arctan1, lines_arctan2;//直线斜率的反正切值,即角度
    lines_arctan1 = get_lines_arctan(lines_1, 1);//0为弧度,1为角度


    printf("排列好的第一次直线角度是:\n");
    //输出排列好的数列  
    for (int i = 0; icout << "检测到的直线角度为:" << lines_arctan1[i] << " 度" << endl;
        if (fabs(lines_arctan1[i])>40)
        {
            lines_2.push_back(lines_1[i]);
        }

    }

    lines_arctan2 = get_lines_arctan(lines_2, 1);//0为弧度,1为角度

    printf("排列好的第二次直线角度是:\n");
    for (int i = 0; i < lines_2.size(); i++)
    {
        cout << "检测到的直线角度为:" << lines_arctan2[i] << " 度" << endl;
    }

    if (lines_2.size() >= 2)
    {

        lines_3.push_back(lines_2[0]);
        lines_3.push_back(lines_1[lines_2.size() - 1]);
    }
    else
    {
        cout << "滤除后的直线个数不够"<< endl;
    //  continue;
    }


    //将最后计算用到的两条直线显示出来
    for (int i = 0; i < lines_3.size(); i++)
    {
        line(dstImage, Point(lines_3[i][0], lines_3[i][1]), Point(lines_3[i][2], lines_3[i][3]), Scalar(255, 255, 0), 2, LINE_AA);
    }



    /****************确定自己在哪两条直线中间,并把这两条直线找出来  结束 *********************************************************************/

    /****************找到消失点  开始 *********************************************************************/
    Point2f Xiaoshidian;//线的交点存储  
    Xiaoshidian = getCrossPoint(lines_3[0], lines_3[1]);//消失点
    float H1 = 44.0;//摄像头高度
    float Dmin = 25;//最短距离
    float Dmax = 250;//最长距离
    float D1 = 29.8;//摄像头坐标与水平面线交点差值

    float Alpha;//俯仰角Αα:阿尔法  Alpha
    float Theta;//垂直视场角 西塔 Theta

    Alpha = atan(Dmin / H1);//俯仰角
    Theta = atan(Dmax / H1) - Alpha;//垂直视场角
    //视场中轴线
    line(dstImage, Point(dstImage.cols / 2, 0), Point(dstImage.cols / 2, dstImage.rows), Scalar(255, 0, 0), 3, LINE_AA);

    //与直线平行的地方
    line(dstImage, Point(Xiaoshidian.x, Xiaoshidian.y), Point(dstImage.cols / 2, dstImage.rows*(1 + Alpha / Theta)), Scalar(255, 0, 255), 3, LINE_AA);

    /****************找到消失点  结束 *********************************************************************/

    //vector corners;//线的交点存储  
    //for (unsigned int i = 0; i
    //{
    //  for (unsigned int j = i + 1; j
    //  {
    //      cv::Point2f pt = getCrossPoint(lines[i], lines[j]);
    //      if (pt.x >= 0 && pt.y >= 0)
    //      {
    //          corners.push_back(pt);
    //      }
    //  }
    //}
    ////【4】依次在图中绘制出角点
    //for (size_t i = 0; i < corners.size(); i++)
    //{
    //  circle(dstImage, corners[i], 3, CV_RGB(0, 255, 0), 2);
    //}
    //【5】显示原始图  
    namedWindow("【原始图】", 0);//参数为零,则可以自由拖动
    imshow("【原始图】", srcImage);

    //【6】边缘检测后的图 
    namedWindow("【边缘检测后的图】", 0);//参数为零,则可以自由拖动
    imshow("【边缘检测后的图】", midImage);

    //【7】显示效果图  
    namedWindow("【效果图】", 0);//参数为零,则可以自由拖动
    imshow("【效果图】", dstImage);

    waitKey(0);

}


你可能感兴趣的:(opencv,图像识别与处理,创意)