【leetcode】Palindrome Partitioning II(hard) ☆

Given a string s, partition s such that every substring of the partition is a palindrome.

Return the minimum cuts needed for a palindrome partitioning of s.

For example, given s = "aab",
Return 1 since the palindrome partitioning ["aa","b"] could be produced using 1 cut.

 

最少切几刀,才能让一个字符串的每个部分都是回文。

 

思路:

用cut[i] 存储从s[0] ~ s[i - 1] 的子字符串,最短切几刀。

为了方便令 cut[0] = -1

只有一个字符时不需要切刀 cut[1] = 0

其他情况下,依次假设从(-1 ~ i - 2)处切刀,如果 s切刀的后半部分是一个回文, cut[i] = cut[j] + 1; cut[i]取所有切法中数值最小的那个

代码如下:这是O(n3)方法,结果超时了....

class Solution {

public:

     int minCut(string s) {

         vector<int> cut(s.length() + 1, 0);

         cut[0] = -1;

         for(int i = 2; i <= s.length(); i++)

         {

             int minNum = s.length();

             for(int j = 0; j < i; j++)

             {

                 if(isPalindrome(s.substr(j, i - j)))

                 {

                     int num = cut[j] + 1;

                     minNum = min(num, minNum); 

                 }

             }

             cut[i] = minNum;

         }

         return cut[s.length()];

     }



    bool isPalindrome(string s)

    {

        int i = 0, j = s.length() - 1;

        while(i < j)

        {

            if(s[i] != s[j]) return false;

            i++; j--;

        }

        return true;

    }

};

 

各种截枝都通过不了,只好看别人的思路,原来可以在判断回文这里下工夫,我是每次都自己判断一遍是不是回文,实际上可以将之前求过的回文信息保存下来,方便后面的判断。

O(N2)解法

class Solution {

public:

int minCut(string s) {

         vector<int> cut(s.length() + 1, 0);

         vector<vector<bool>> isPalindrome(s.length() + 1, vector<bool>(s.length() + 1, false));

         cut[0] = -1;

         for(int i = 2; i <= s.length(); i++)

         {

             int minNum = s.length();

             for(int j = i - 1; j >= 0 ; j--)

             {

                 if((s[j] == s[i-1]) && (i - 1 - j < 2 || isPalindrome[j + 1][i - 2]))

                 {

                     isPalindrome[j][i - 1] = true;

                     minNum = min(cut[j] + 1, minNum); 

                 }

             }

             cut[i] = minNum;

         }

         return cut[s.length()];

     }

};

 

还有更厉害的,上面的方法保存了判断回文的信息,这有一个不需要保存的,速度非常快

class Solution {

public:

    int minCut(string s) {

        int n = s.size();

        vector<int> cut(n+1, 0);  // number of cuts for the first k characters

        for (int i = 0; i <= n; i++) cut[i] = i-1;

        for (int i = 0; i < n; i++) {

            for (int j = 0; i-j >= 0 && i+j < n && s[i-j]==s[i+j] ; j++) // odd length palindrome

                cut[i+j+1] = min(cut[i+j+1],1+cut[i-j]);



            for (int j = 1; i-j+1 >= 0 && i+j < n && s[i-j+1] == s[i+j]; j++) // even length palindrome

                cut[i+j+1] = min(cut[i+j+1],1+cut[i-j+1]);

        }

        return cut[n];

    }

};

 

你可能感兴趣的:(partition)