Mask RCNN tensorflow 训练自己的数据运行demo实例【从标注数据到最终训练和测试】超全教程

本教程 适用于 Ubuntu 系统的用户、Windows 系统的用户

Mask RCNN-->https://github.com/matterport/Mask_RCNN

可以直接使用以下命令 克隆到自己的电脑上:

git clone https://github.com/matterport/Mask_RCNN

使用的主要框架如下:

  • Tensorflow-gpu

  • keras

  • python3

推荐大家使用python3 去运行项目,下面的教程也是基于python3的

制作Mask Rcnn的数据源
 

1.数据标注
使用 labelme 进行数据的标注

Mask RCNN tensorflow 训练自己的数据运行demo实例【从标注数据到最终训练和测试】超全教程_第1张图片

打开一张图片进行标注

Mask RCNN tensorflow 训练自己的数据运行demo实例【从标注数据到最终训练和测试】超全教程_第2张图片

保存之后,可以看到 labelme给我们生成了一个json 文件 ,之后 来到我们保存json 文件的目录下

输入以下命令,将json 文件进行转化

labelme_json_to_dataset 002.json(替换成你生成的json文件名)

转化完成后 可以看见生成的文件目录

Mask RCNN tensorflow 训练自己的数据运行demo实例【从标注数据到最终训练和测试】超全教程_第3张图片

下面进行 数据源的制作,其实制作步骤也是很简单。

首先 创建 四个文件夹 分别是 cv2_mask、json、labelme_json、pic

cv2_mask----》放labelme 生成的 label.png 文件

json 文件夹----》 存放我们使用labelme 标注后生成的那个 json文件

Mask RCNN tensorflow 训练自己的数据运行demo实例【从标注数据到最终训练和测试】超全教程_第4张图片

labelme_json 文件夹 ---》 存放我们 前面转化生成的 002_json文件夹

Mask RCNN tensorflow 训练自己的数据运行demo实例【从标注数据到最终训练和测试】超全教程_第5张图片

pic文件夹  ----》 存放我们的原始图片 

 

下面开始准备训练

首先,我们在项目的根目录下创建 一个 train,py Python文件,接着把下面的代码 考进去

Mask RCNN tensorflow 训练自己的数据运行demo实例【从标注数据到最终训练和测试】超全教程_第6张图片

下面贴出训练文件的代码

# -*- coding: utf-8 -*-
 
import os
import sys
import random
import math
import re
import time
import numpy as np
import cv2
import matplotlib
import matplotlib.pyplot as plt
import tensorflow as tf
from mrcnn.config import Config
# import utils
from mrcnn import model as modellib, utils
from mrcnn import visualize
import yaml
from mrcnn.model import log
from PIL import Image
 
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# Root directory of the project
ROOT_DIR = os.getcwd()
 
# ROOT_DIR = os.path.abspath("../")
# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
 
iter_num = 0
 
# Local path to trained weights file
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):
    utils.download_trained_weights(COCO_MODEL_PATH)
 
 
class ShapesConfig(Config):
    """Configuration for training on the toy shapes dataset.
    Derives from the base Config class and overrides values specific
    to the toy shapes dataset.
    """
    # Give the configuration a recognizable name
    NAME = "shapes"
 
    # Train on 1 GPU and 8 images per GPU. We can put multiple images on each
    # GPU because the images are small. Batch size is 8 (GPUs * images/GPU).
    GPU_COUNT = 1
    IMAGES_PER_GPU = 1
 
    # Number of classes (including background)
    NUM_CLASSES = 1 + 1  # background + 1 shapes
 
    # Use small images for faster training. Set the limits of the small side
    # the large side, and that determines the image shape.
    IMAGE_MIN_DIM = 320
    IMAGE_MAX_DIM = 384
 
    # Use smaller anchors because our image and objects are small
    RPN_ANCHOR_SCALES = (8 * 6, 16 * 6, 32 * 6, 64 * 6, 128 * 6)  # anchor side in pixels
 
    # Reduce training ROIs per image because the images are small and have
    # few objects. Aim to allow ROI sampling to pick 33% positive ROIs.
    TRAIN_ROIS_PER_IMAGE = 100
 
    # Use a small epoch since the data is simple
    STEPS_PER_EPOCH = 100
 
    # use small validation steps since the epoch is small
    VALIDATION_STEPS = 50
 
 
config = ShapesConfig()
config.display()
 
 
class DrugDataset(utils.Dataset):
    # 得到该图中有多少个实例(物体)
    def get_obj_index(self, image):
        n = np.max(image)
        return n
 
    # 解析labelme中得到的yaml文件,从而得到mask每一层对应的实例标签
    def from_yaml_get_class(self, image_id):
        info = self.image_info[image_id]
        with open(info['yaml_path']) as f:
            temp = yaml.load(f.read())
            labels = temp['label_names']
            del labels[0]
        return labels
 
    # 重新写draw_mask
    def draw_mask(self, num_obj, mask, image, image_id):
        # print("draw_mask-->",image_id)
        # print("self.image_info",self.image_info)
        info = self.image_info[image_id]
        # print("info-->",info)
        # print("info[width]----->",info['width'],"-info[height]--->",info['height'])
        for index in range(num_obj):
            for i in range(info['width']):
                for j in range(info['height']):
                    # print("image_id-->",image_id,"-i--->",i,"-j--->",j)
                    # print("info[width]----->",info['width'],"-info[height]--->",info['height'])
                    at_pixel = image.getpixel((i, j))
                    if at_pixel == index + 1:
                        mask[j, i, index] = 1
        return mask
 
    # 重新写load_shapes,里面包含自己的自己的类别
    # 并在self.image_info信息中添加了path、mask_path 、yaml_path
    # yaml_pathdataset_root_path = "/tongue_dateset/"
    # img_floder = dataset_root_path + "rgb"
    # mask_floder = dataset_root_path + "mask"
    # dataset_root_path = "/tongue_dateset/"
    def load_shapes(self, count, img_floder, mask_floder, imglist, dataset_root_path):
        """Generate the requested number of synthetic images.
        count: number of images to generate.
        height, width: the size of the generated images.
        """
        # Add classes
        self.add_class("shapes", 1, "person")
 
        for i in range(count):
            # 获取图片宽和高
            print(i)
            filestr = imglist[i].split(".")[0]
            # print(imglist[i],"-->",cv_img.shape[1],"--->",cv_img.shape[0])
            # print("id-->", i, " imglist[", i, "]-->", imglist[i],"filestr-->",filestr)
            # filestr = filestr.split("_")[1]
            mask_path = mask_floder + "/" + filestr + ".png"
            yaml_path = dataset_root_path + "labelme_json/" + filestr + "_json/info.yaml"
            print(dataset_root_path + "labelme_json/" + filestr + "_json/img.png")
            cv_img = cv2.imread(dataset_root_path + "labelme_json/" + filestr + "_json/img.png")
 
            self.add_image("shapes", image_id=i, path=img_floder + "/" + imglist[i],
                           width=cv_img.shape[1], height=cv_img.shape[0], mask_path=mask_path, yaml_path=yaml_path)
 
    # 重写load_mask
    def load_mask(self, image_id):
        """Generate instance masks for shapes of the given image ID.
        """
        global iter_num
        print("image_id", image_id)
        info = self.image_info[image_id]
        count = 1  # number of object
        img = Image.open(info['mask_path'])
        num_obj = self.get_obj_index(img)
        mask = np.zeros([info['height'], info['width'], num_obj], dtype=np.uint8)
        mask = self.draw_mask(num_obj, mask, img, image_id)
        occlusion = np.logical_not(mask[:, :, -1]).astype(np.uint8)
        for i in range(count - 2, -1, -1):
            mask[:, :, i] = mask[:, :, i] * occlusion
 
            occlusion = np.logical_and(occlusion, np.logical_not(mask[:, :, i]))
        labels = []
        labels = self.from_yaml_get_class(image_id)
        labels_form = []
        for i in range(len(labels)):
            if labels[i].find("person") != -1:
                # print "car"
                labels_form.append("person")
            elif labels[i].find("leg") != -1:
                # print "leg"
                labels_form.append("leg")
            elif labels[i].find("well") != -1:
                # print "well"
                labels_form.append("well")
        class_ids = np.array([self.class_names.index(s) for s in labels_form])
        return mask, class_ids.astype(np.int32)
 
 
def get_ax(rows=1, cols=1, size=8):
    """Return a Matplotlib Axes array to be used in
    all visualizations in the notebook. Provide a
    central point to control graph sizes.
    Change the default size attribute to control the size
    of rendered images
    """
    _, ax = plt.subplots(rows, cols, figsize=(size * cols, size * rows))
    return ax
 
 
# 基础设置
dataset_root_path = "samples/trinmy/myinfo/"
img_floder = dataset_root_path + "pic"
mask_floder = dataset_root_path + "cv2_mask"
# yaml_floder = dataset_root_path
imglist = os.listdir(img_floder)
count = len(imglist)
 
# train与val数据集准备
dataset_train = DrugDataset()
dataset_train.load_shapes(count, img_floder, mask_floder, imglist, dataset_root_path)
dataset_train.prepare()
 
# print("dataset_train-->",dataset_train._image_ids)
 
dataset_val = DrugDataset()
dataset_val.load_shapes(count, img_floder, mask_floder, imglist, dataset_root_path)
dataset_val.prepare()
 
# print("dataset_val-->",dataset_val._image_ids)
 
# Load and display random samples
# image_ids = np.random.choice(dataset_train.image_ids, 4)
# for image_id in image_ids:
#    image = dataset_train.load_image(image_id)
#    mask, class_ids = dataset_train.load_mask(image_id)
#    visualize.display_top_masks(image, mask, class_ids, dataset_train.class_names)
 
# Create model in training mode
model = modellib.MaskRCNN(mode="training", config=config,
                          model_dir=MODEL_DIR)
 
# Which weights to start with?
init_with = "coco"  # imagenet, coco, or last
 
if init_with == "imagenet":
    model.load_weights(model.get_imagenet_weights(), by_name=True)
elif init_with == "coco":
    # Load weights trained on MS COCO, but skip layers that
    # are different due to the different number of classes
    # See README for instructions to download the COCO weights
    # print(COCO_MODEL_PATH)
    model.load_weights(COCO_MODEL_PATH, by_name=True,
                       exclude=["mrcnn_class_logits", "mrcnn_bbox_fc",
                                "mrcnn_bbox", "mrcnn_mask"])
elif init_with == "last":
    # Load the last model you trained and continue training
    model.load_weights(model.find_last()[1], by_name=True)
 
# Train the head branches
# Passing layers="heads" freezes all layers except the head
# layers. You can also pass a regular expression to select
# which layers to train by name pattern.
model.train(dataset_train, dataset_val,
            learning_rate=config.LEARNING_RATE,
            epochs=10,
            layers='heads')
 
# Fine tune all layers
# Passing layers="all" trains all layers. You can also
# pass a regular expression to select which layers to
# train by name pattern.
model.train(dataset_train, dataset_val,
            learning_rate=config.LEARNING_RATE / 10,
            epochs=10,
            layers="all")

Mask RCNN tensorflow 训练自己的数据运行demo实例【从标注数据到最终训练和测试】超全教程_第7张图片

训练后得到的模型文件:

Mask RCNN tensorflow 训练自己的数据运行demo实例【从标注数据到最终训练和测试】超全教程_第8张图片

测试

下面使用训练好的模型就行测试了!

首先,在项目根目录下 创建 fortest.py 文件(与train.py文件同在一个目录即可),然后把下面的代码帖进去

# -*- coding: utf-8 -*-
import os
import sys
import random
import math
import numpy as np
import skimage.io
import matplotlib
import matplotlib.pyplot as plt
import cv2
import time
from mrcnn.config import Config
from datetime import datetime
# Root directory of the project
ROOT_DIR = os.getcwd()
 
# Import Mask RCNN
sys.path.append(ROOT_DIR)  # To find local version of the library
from mrcnn import utils
import mrcnn.model as modellib
from mrcnn import visualize
# Import COCO config
# sys.path.append(os.path.join(ROOT_DIR, "samples/coco/"))  # To find local version
# from samples.coco import coco
 
 
# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
 
# Local path to trained weights file
COCO_MODEL_PATH = os.path.join(MODEL_DIR ,"mask_rcnn_shapes_0010.h5")
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):
    utils.download_trained_weights(COCO_MODEL_PATH)
    print("cuiwei***********************")
 
# Directory of images to run detection on
IMAGE_DIR = os.path.join(ROOT_DIR, "images")
 
class ShapesConfig(Config):
    """Configuration for training on the toy shapes dataset.
    Derives from the base Config class and overrides values specific
    to the toy shapes dataset.
    """
    # Give the configuration a recognizable name
    NAME = "shapes"
 
    # Train on 1 GPU and 8 images per GPU. We can put multiple images on each
    # GPU because the images are small. Batch size is 8 (GPUs * images/GPU).
    GPU_COUNT = 1
    IMAGES_PER_GPU = 1
 
    # Number of classes (including background)
    NUM_CLASSES = 1 + 1  # background + 3 shapes
 
    # Use small images for faster training. Set the limits of the small side
    # the large side, and that determines the image shape.
    IMAGE_MIN_DIM = 320
    IMAGE_MAX_DIM = 384
 
    # Use smaller anchors because our image and objects are small
    RPN_ANCHOR_SCALES = (8 * 6, 16 * 6, 32 * 6, 64 * 6, 128 * 6)  # anchor side in pixels
 
    # Reduce training ROIs per image because the images are small and have
    # few objects. Aim to allow ROI sampling to pick 33% positive ROIs.
    TRAIN_ROIS_PER_IMAGE =100
 
    # Use a small epoch since the data is simple
    STEPS_PER_EPOCH = 100
 
    # use small validation steps since the epoch is small
    VALIDATION_STEPS = 50
 
#import train_tongue
#class InferenceConfig(coco.CocoConfig):
class InferenceConfig(ShapesConfig):
    # Set batch size to 1 since we'll be running inference on
    # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
    GPU_COUNT = 1
    IMAGES_PER_GPU = 1
 
config = InferenceConfig()
 
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)
 
 
# Create model object in inference mode.
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)
 
# Load weights trained on MS-COCO
model.load_weights(COCO_MODEL_PATH, by_name=True)
 
# COCO Class names
# Index of the class in the list is its ID. For example, to get ID of
# the teddy bear class, use: class_names.index('teddy bear')
class_names = ['BG', 'person']
# Load a random image from the images folder
file_names = next(os.walk(IMAGE_DIR))[2]
image = skimage.io.imread("./images/5951960966_d4e1cda5d0_z.jpg")
 
a=datetime.now()
# Run detection
results = model.detect([image], verbose=1)
b=datetime.now()
# Visualize results
print("shijian",(b-a).seconds)
r = results[0]
visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'],
                            class_names, r['scores'])
 

运行程序:

python3 fortest.py

运行结果:

Mask RCNN tensorflow 训练自己的数据运行demo实例【从标注数据到最终训练和测试】超全教程_第9张图片

如需安装运行环境或远程调试,可加QQ905733049由专业技术人员远程协助!

如QQ不能加入,可发送邮件到邮箱(邮箱地址:[email protected]),技术人员会及时给您回复信息

 

Python学习参考实例:

Python相片更换背景颜色qt窗体程序:
https://blog.csdn.net/alicema1111/article/details/106919140

Python+OpenCV图像人脸识别人数统计:

https://blog.csdn.net/alicema1111/article/details/105378639

 

你可能感兴趣的:(人脸识别,python,深度学习,tensorflow,opencv)