【ARM裸机】 - 中断与异常

中断与异常

  1.   这节重点理解,对于一个CPU,如S3C2440,它的中断控制器所起的硬件作用,即当中断触发时,硬件本身会强迫CPU到异常向量表的地址处执行其中一条,这是硬件强行完成的跳转操作;之后跳转到中断处理程序,此部分由程序员来实现,一般需要做:1、保护现场 2、执行处理程序 3、回复现场。
  2.  理解中断带来的好处,节省了CPU资源,是操作系统中的基础。
  3.   ARM的7中工作模式
  4.   ARM的2种状态:ARM指令集与Thumb指令集的区别

1、中断控制器

一个事件的处理往往有两种方式:

  1. 中断方式
  2. 轮询方式

轮询方式比较简单,在死循环中没隔一定时间,进行一次判断事件是否发生,比较耗费资源。

中断方式相对复杂一点,但是节省资源,往往通过硬件触发中断,然后执行中断处理程序。

【ARM裸机】 - 中断与异常_第1张图片

2、ARM中对异常的使用

(1)    软件初始化中断

  1. 设置中断源
  2. 设置中断控制器(屏蔽、优先级设置)
  3. 打开CPU中断总开关

(2)    产生中断

按下按键->中断控制器->CPU

(3)    触发中断流程(硬件自身具备)

CPU每执行完一条执行就检查是否有异常发生

发现异常产生,就去处理,对于不同的异常,跳转到不同的地址(即中断向量表)执行程序。

(4)    执行中断流程

  • 中断发生时,硬件迫使CPU到异常向量表的指定位置去执行。此位置往往是一条跳转指令,跳转到中断处理程序的地方。
  • 异常向量表:
【ARM裸机】 - 中断与异常_第2张图片

按键中断发生时,CPU通过硬件被迫使到0x18的地址去执行,即ldr pc, _irq。

.globl _start
_start:	b	start_code
	ldr	pc, _undefined_instruction
	ldr	pc, _software_interrupt
	ldr	pc, _prefetch_abort
	ldr	pc, _data_abort
	ldr	pc, _not_used
	ldr	pc, _irq
	ldr	pc, _fiq

_irq中我们需要做:

  1. 保护现场
  2. 调用处理函数
  3. 恢复现场

3、CPU运行模式

(1)根据芯片手册知道,ARM920T 支持 7 种运行模式:

●  用户(usr) ):正常 ARM 程序执行状态

●  快中断(fiq) ):为支持数据传输或通道处理设计

●  中断(irq) ):用于一般用途的中断处理

●  管理(svc) ):操作系统保护模式

●  中止(abt ): 数据或指令预取中止后进入

●  系统(sys) ):操作系统的特权用户模式

●  未定义(und) ):执行了一个未定义指令时进入

(2)7中模式对应的寄存器

【ARM裸机】 - 中断与异常_第3张图片


R13:SP(堆栈指针)

R14:LR(保存了异常发生时的指令地址)


在不同工作模式下,有该模式专属的寄存器,如中断下的R13\R14寄存器,处于中断模式时,此时的R13\R14是此模式下专有的,不影响其他模式下的R13\R14。

 

CPSR是程序状态寄存器[4:0]决定了工作模式,[27:8]是保留字节,[31:28]是条件代码标志位。如执行cmp R0,R1时,影响Z位,当R0=R1时,Z=1;否则Z=0;beq XXX,根据Z==1,则跳转到XXX。


CPSR:程序状态寄存器

SPSR:程序状态保存寄存器,用来保存被中断模式的CPSR。

【ARM裸机】 - 中断与异常_第4张图片


位于模式的对应关系:

【ARM裸机】 - 中断与异常_第5张图片


4、异常执行总结

保存与恢复现场

【ARM裸机】 - 中断与异常_第6张图片

5、两种状态

  1. ARM 状态:一条汇编对应机器码占4个字节
  2. Thumb 状态:一条汇编对应机器码占2个字节
【ARM裸机】 - 中断与异常_第7张图片

6、产生未定义指令异常的例子

.text
.global _start

_start:
	b reset  /* vector 0 : reset */
	b do_und /* vector 4 : und */

do_und:
	/* 执行到这里之前:
	 * 1. lr_und保存有被中断模式中的下一条即将执行的指令的地址
	 * 2. SPSR_und保存有被中断模式的CPSR
	 * 3. CPSR中的M4-M0被设置为11011, 进入到und模式
	 * 4. 跳到0x4的地方执行程序 
	 */

	/* sp_und未设置, 先设置它 */
	ldr sp, =0x34000000

	/* 在und异常处理函数中有可能会修改r0-r12, 所以先保存 */
	/* lr是异常处理完后的返回地址, 也要保存 */
  /* 保存现场 */
	stmdb sp!, {r0-r12, lr}  
	

	/* 处理und异常 */
	mrs r0, cpsr
	ldr r1, =und_string
	bl printException
	
	/* 恢复现场 */
	ldmia sp!, {r0-r12, pc}^  /* ^会把spsr的值恢复到cpsr里 */
	
und_string:
	.string "undefined instruction exception"


reset:
	/* 关闭看门狗 */
	ldr r0, =0x53000000
	ldr r1, =0
	str r1, [r0]

	/* 设置MPLL, FCLK : HCLK : PCLK = 400m : 100m : 50m */
	/* LOCKTIME(0x4C000000) = 0xFFFFFFFF */
	ldr r0, =0x4C000000
	ldr r1, =0xFFFFFFFF
	str r1, [r0]

	/* CLKDIVN(0x4C000014) = 0X5, tFCLK:tHCLK:tPCLK = 1:4:8  */
	ldr r0, =0x4C000014
	ldr r1, =0x5
	str r1, [r0]

	/* 设置CPU工作于异步模式 */
	mrc p15,0,r0,c1,c0,0
	orr r0,r0,#0xc0000000   //R1_nF:OR:R1_iA
	mcr p15,0,r0,c1,c0,0

	/* 设置MPLLCON(0x4C000004) = (92<<12)|(1<<4)|(1<<0) 
	 *  m = MDIV+8 = 92+8=100
	 *  p = PDIV+2 = 1+2 = 3
	 *  s = SDIV = 1
	 *  FCLK = 2*m*Fin/(p*2^s) = 2*100*12/(3*2^1)=400M
	 */
	ldr r0, =0x4C000004
	ldr r1, =(92<<12)|(1<<4)|(1<<0)
	str r1, [r0]

	/* 一旦设置PLL, 就会锁定lock time直到PLL输出稳定
	 * 然后CPU工作于新的频率FCLK
	 */
	
	

	/* 设置内存: sp 栈 */
	/* 分辨是nor/nand启动
	 * 写0到0地址, 再读出来
	 * 如果得到0, 表示0地址上的内容被修改了, 它对应ram, 这就是nand启动
	 * 否则就是nor启动
	 */
	mov r1, #0
	ldr r0, [r1] /* 读出原来的值备份 */
	str r1, [r1] /* 0->[0] */ 
	ldr r2, [r1] /* r2=[0] */
	cmp r1, r2   /* r1==r2? 如果相等表示是NAND启动 */
	ldr sp, =0x40000000+4096 /* 先假设是nor启动 */
	moveq sp, #4096  /* nand启动 */
	streq r0, [r1]   /* 恢复原来的值 */

	bl sdram_init
	//bl sdram_init2	 /* 用到有初始值的数组, 不是位置无关码 */

	/* 重定位text, rodata, data段整个程序 */
	bl copy2sdram

	/* 清除BSS段 */
	bl clean_bss

	bl uart0_init

	bl print1
	/* 故意加入一条未定义指令 */
und_code:
	.word 0xdeadc0de  /* 未定义指令 */
	bl print2

	//bl main  /* 使用BL命令相对跳转, 程序仍然在NOR/sram执行 */
	ldr pc, =main  /* 绝对跳转, 跳到SDRAM */

halt:
	b halt
	

6、按键中断

【ARM裸机】 - 中断与异常_第8张图片

相比与异常,外部中断需要进行中断初始化才能正常触发中断,主要包括:

  1. 开总中断开关(CPSR中I位)
  2. 初始化中断控制器
  3. 初始化按键,设置为中断源(中断引脚,中断触发方式)

/* 初始化中断控制器 */
void interrupt_init(void)
{
	INTMSK &= ~((1<<0) | (1<<2) | (1<<5));
}

/* 初始化按键, 设为中断源 */
void key_eint_init(void)
{
	/* 配置GPIO为中断引脚 */
	GPFCON &= ~((3<<0) | (3<<4));
	GPFCON |= ((2<<0) | (2<<4));   /* S2,S3被配置为中断引脚 */

	GPGCON &= ~((3<<6) | (3<<11));
	GPGCON |= ((2<<6) | (2<<11));   /* S4,S5被配置为中断引脚 */
	

	/* 设置中断触发方式: 双边沿触发 */
	EXTINT0 |= (7<<0) | (7<<8);     /* S2,S3 */
	EXTINT1 |= (7<<12);             /* S4 */
	EXTINT2 |= (7<<12);             /* S5 */

	/* 设置EINTMASK使能eint11,19 */
	EINTMASK &= ~((1<<11) | (1<<19));
}

	/* 复位之后, cpu处于svc模式
	 * 现在, 切换到usr模式
	 */
	mrs r0, cpsr         /* 读出cpsr */
	bic r0, r0, #0xf     /* 修改M4-M0为0b10000, 进入usr模式 */
	bic r0, r0, #(1<<7)  /* 清除I位, 使能中断 */
	msr cpsr, r0

针对不同的硬件,其中断源可能各有不同:

【ARM裸机】 - 中断与异常_第9张图片

中断向量表:


.text
.global _start

_start:
	b reset          /* vector 0 : reset */
	ldr pc, und_addr /* vector 4 : und */
	ldr pc, swi_addr /* vector 8 : swi */
	b halt			 /* vector 0x0c : prefetch aboot */
	b halt			 /* vector 0x10 : data abort */
	b halt			 /* vector 0x14 : reserved */
	ldr pc, irq_addr /* vector 0x18 : irq */
	b halt			 /* vector 0x1c : fiq */

und_addr:
	.word do_und

swi_addr:
	.word do_swi

irq_addr:
	.word do_irq

中断处理:
do_irq:

	/* 执行到这里之前:
	 * 1. lr_irq保存有被中断模式中的下一条即将执行的指令的地址
	 * 2. SPSR_irq保存有被中断模式的CPSR
	 * 3. CPSR中的M4-M0被设置为10010, 进入到irq模式
	 * 4. 跳到0x18的地方执行程序 
	 */

	/* sp_irq未设置, 先设置它 */
	ldr sp, =0x33d00000

	/* 保存现场 */
	/* 在irq异常处理函数中有可能会修改r0-r12, 所以先保存 */
	/* lr-4是异常处理完后的返回地址, 也要保存 */
	sub lr, lr, #4
	stmdb sp!, {r0-r12, lr}  
	
	/* 处理irq异常 */
	bl handle_irq_c
	
	/* 恢复现场 */
	ldmia sp!, {r0-r12, pc}^  /* ^会把spsr_irq的值恢复到cpsr里 */

中断服务子程序:

void handle_irq_c(void)
{
	/* 分辨中断源 */
	int bit = INTOFFSET;

	/* 调用对应的处理函数 */
	if (bit == 0 || bit == 2 || bit == 5)  /* eint0,2,eint8_23 */
	{
		key_eint_irq(bit); /* 处理中断, 清中断源EINTPEND */
	}

	/* 清中断 : 从源头开始清 */
	SRCPND = (1<

按键中断源判别与处理:

void key_eint_irq(int irq)
{
	unsigned int val = EINTPEND;
	unsigned int val1 = GPFDAT;
	unsigned int val2 = GPGDAT;
	
	if (irq == 0) /* eint0 : s2 控制 D12 */
	{
		if (val1 & (1<<0)) /* s2 --> gpf6 */
		{
			/* 松开 */
			GPFDAT |= (1<<6);
		}
		else
		{
			/* 按下 */
			GPFDAT &= ~(1<<6);
		}
		
	}
	else if (irq == 2) /* eint2 : s3 控制 D11 */
	{
		if (val1 & (1<<2)) /* s3 --> gpf5 */
		{
			/* 松开 */
			GPFDAT |= (1<<5);
		}
		else
		{
			/* 按下 */
			GPFDAT &= ~(1<<5);
		}
		
	}
	else if (irq == 5) /* eint8_23, eint11--s4 控制 D10, eint19---s5 控制所有LED */
	{
		if (val & (1<<11)) /* eint11 */
		{
			if (val2 & (1<<3)) /* s4 --> gpf4 */
			{
				/* 松开 */
				GPFDAT |= (1<<4);
			}
			else
			{
				/* 按下 */
				GPFDAT &= ~(1<<4);
			}
		}
		else if (val & (1<<19)) /* eint19 */
		{
			if (val2 & (1<<11))
			{
				/* 松开 */
				/* 熄灭所有LED */
				GPFDAT |= ((1<<4) | (1<<5) | (1<<6));
			}
			else
			{
				/* 按下: 点亮所有LED */
				GPFDAT &= ~((1<<4) | (1<<5) | (1<<6));
			}
		}
	}

	EINTPEND = val;
}







你可能感兴趣的:(ARM裸机)