最短路径问题

                    两种算发:  克鲁斯卡尔算法    Floyd算法

 1算法定义

克鲁斯卡尔算法
       假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看  成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。
2 举例描述
克鲁斯卡尔算法(Kruskal's algorithm)是两个经典的最小生成树算法的较为简单理解的一个。这里面充分体现了贪心算法的精髓。大致的流程可以用一个图来表示。这里的图的选择借用了Wikipedia上的那个。非常清晰且直观。
首先第一步,我们有一张图,有若干点和边
如下图所示:
第一步我们要做的事情就是将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择。
排序完成后,我们率先选择了边AD。这样我们的图就变成了
  最短路径问题_第1张图片
第二步,在剩下的边中寻找。我们找到了CE。这里边的权重也是5
  最短路径问题_第2张图片
依次类推我们找到了6,7,7。完成之后,图变成了这个样子。
最短路径问题_第3张图片
下一步就是关键了。下面选择那条边呢? BC或者EF吗?都不是,尽管现在长度为8的边是最小的未选择的边。但是他们已经连通了(对于BC可以通过CE,EB来连接,类似的EF可以通过EB,BA,AD,DF来接连)。所以我们不需要选择他们。类似的BD也已经连通了(这里上图的连通线用红色表示了)。
最后就剩下EG和FG了。当然我们选择了EG。最后成功的图就是下图:
最短路径问题_第4张图片
到这里所有的边点都已经连通了,一个最小生成树构建完成。
Kruskal算法的时间复杂度由排序算法决定,若采用快排则时间复杂度为O(N log N)。
 
c  代码暂无;
 
 
 
 
 
 
 
 
3

Floyd算法 弗洛伊德算法一般指Floyd算法

Floyd算法又称为,插点法,是一种用于寻找给定的加权图中多源点之间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。
 

1核心思路

通过一个图的权值矩阵求出它的每两点间的最短路径矩阵。
从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1);又用同样地公式由D(1)构造出D(2);……;最后又用同样的公式由D(n-1)构造出矩阵D(n)。矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,同时还可引入一个后继节点矩阵path来记录两点间的最短路径。
采用的是(松弛技术),对在i和j之间的所有其他点进行一次松弛。所以时间复杂度为O(n^3);
其状态转移方程如下: map[i,j]:=min{map[i,k]+map[k,j],map[i,j]}
map[i,j]表示i到j的最短距离,K是穷举 i,j的断点,map[n,n]初值应该为0,或者按照题目意思来做。
当然,如果这条路没有通的话,还必须特殊处理,比如没有map[i,k]这条路

2算法过程

1,从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
2,对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。
把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i,j]=d,d表示该路的长度;否则G[i,j]=无穷大。定义一个矩阵D用来记录所插入点的信息,D[i,j]表示从Vi到Vj需要经过的点,初始化D[i,j]=j。把各个顶点插入图中,比较插点后的距离与原来的距离,G[i,j] = min( G[i,j], G[i,k]+G[k,j] ),如果G[i,j]的值变小,则D[i,j]=k。在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。
比如,要寻找从V5到V1的路径。根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1)=1,说明V3与V1直接相连

3时间复杂度与空间复杂度

时间复杂度:O(n^3);
空间复杂度:O(n^2);
 

4优缺点分析

Floyd算法适用于APSP(All Pairs Shortest Paths),是一种动态规划算法,稠密图效果最佳,边权可正可负。此算法简单有效,由于三重循环结构紧凑,对于稠密图,效率要高于执行|V|次Dijkstra算法。
优点:容易理解,可以算出任意两个节点之间的最短距离,代码编写简单
缺点:时间复杂度比较高,不适合计算大量数据。
  代码实现:
    c

某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。 Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0 接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B 再接下一行有两个整数S,T(0<=S,T 对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2Sample Output
2
-1

 
#include
#define Max 10000000
 int map[200][200];
  void  floyd(int n)
    {
    	int i,j,k;
    	  for(i=0;i

 
 
 

你可能感兴趣的:(总结,hdu,oj)