设备树中的spi设备以及内核对spi节点的处理流程

dts文件中的spi节点

&ecspi2{ /* spi控制器节点 */
    fsl,spi-num-chipselects= < 1 >;
    cs-gpios = <&gpio5 13 0 > ;/* 片选的io口 */
    pinctrl-names = "default";
    pinctrl-0 = <&pinctrl_ecspi2 >;
    status = "okay"; /* status属性值为"okay"表示spidev0设备使能, "disabled"表示设备没有使用*/
    spidev@0x00{
        compatible = "spidev","rohm,dh2228fv";/* 此属性值用于与spi设备驱动匹配 */
        reg = <0>;  /*spi设备是没有设备地址的, 这里是指使用spi控制器的cs-gpios里的第几个片选io */
        
        spi-max-frequency = <10000000>; /* 指定spi设备的最大工作时钟 */

    /*以下为自定义属性 用于指定工作时序方式及其它功能设置等*/
    ...
    buswidth = <8>; /* 传输以8位为单位 */
    mode = <0>;  /* 使用第几种工作时序(CPOL, CPHA) */
             /*但在现用的内核源码里发现, spi设备的工作时序并不是用mode属性值来指定的*/
             /* 如CPOL需要设1, 则只需在spi设备节点里加上"spi-cpol"属性即可; CPOL设0,则不写"spi-cpol"属性即可 */
             /* CPHA设1时, 则在设备节点里加上"spi-cpha"属性即可 */

    }; 
};

dtsi文件中的设备树节点

	ecspi2: ecspi@30830000 {
		compatible = "fsl,imx6ul-ecspi", "fsl,imx51-ecspi";
		reg = <0x0 0x30830000 0x0 0x10000>;
		interrupts = ;
		clocks = <&clk IMX8MQ_CLK_ECSPI2_ROOT>,
			 <&clk IMX8MQ_CLK_ECSPI2_ROOT>;
		clock-names = "ipg", "per";
		interrupt-parent = <&gpc>;
		status = "disabled";
	};

 

一般带spi名称的节点表示spi控制器, 它会先被转换为platform_device, 在内核中有对应的platform_driver;(根据compatible属性来匹配)一般为厂商所配套的platform_driver文件(freescale的处理文件为spi-imx.c),platform_driver的probe函数会调用spi_register_master(), 下面是spi节点在内核中的转化过程:

spi_imx_probe //drivers/spi/spi-imx.c
    spi_bitbang_start 
      spi_register_master  
        of_register_spi_devices   
            for_each_available_child_of_node(ctlr->dev.of_node, nc) {
                spi = of_register_spi_device(ctlr, nc);  // 读取设备树中的spi子节点的属性 
                                spi = spi_alloc_device(ctlr);                                
                                rc = spi_add_device(spi); //添加spi设备
            }

下面来重点看一下of_register_spi_device()函数,该函数的主要作用是读取spi节点内的各种值

static struct spi_device *
of_register_spi_device(struct spi_master *master, struct device_node *nc)
{
	struct spi_device *spi;
	int rc;
	u32 value;

	/* Alloc an spi_device 分配一个spi设备*/
	spi = spi_alloc_device(master); 
	if (!spi) {
		dev_err(&master->dev, "spi_device alloc error for %s\n",
			nc->full_name);
		rc = -ENOMEM;
		goto err_out;
	}

	/* Select device driver 获取 compatibel 属性 用于匹配spi driver*/ 
	rc = of_modalias_node(nc, spi->modalias,
				sizeof(spi->modalias));
	if (rc < 0) {
		dev_err(&master->dev, "cannot find modalias for %s\n",
			nc->full_name);
		goto err_out;
	}

	/* Device address 获取 reg 属性作为片选编号*/ 
	rc = of_property_read_u32(nc, "reg", &value);
	if (rc) {
		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
			nc->full_name, rc);
		goto err_out;
	}
	spi->chip_select = value;

	/* Mode (clock phase/polarity/etc.) spi mode选择*/
	if (of_find_property(nc, "spi-cpha", NULL))
		spi->mode |= SPI_CPHA;
	if (of_find_property(nc, "spi-cpol", NULL))
		spi->mode |= SPI_CPOL;
	if (of_find_property(nc, "spi-cs-high", NULL))
		spi->mode |= SPI_CS_HIGH;
	if (of_find_property(nc, "spi-3wire", NULL))
		spi->mode |= SPI_3WIRE;
	if (of_find_property(nc, "spi-lsb-first", NULL))
		spi->mode |= SPI_LSB_FIRST;

	/* Device DUAL/QUAD mode */
	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_TX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_TX_QUAD;
			break;
		default:
			dev_warn(&master->dev,
				"spi-tx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_RX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_RX_QUAD;
			break;
		default:
			dev_warn(&master->dev,
				"spi-rx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	/* Device speed spi速度设置*/
	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
	if (rc) {
		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
			nc->full_name, rc);
		goto err_out;
	}
	spi->max_speed_hz = value;

	/* Store a pointer to the node in the device structure */
	of_node_get(nc); //保存设备树节点
	spi->dev.of_node = nc;

	/* Register the new device 注册新的spi设备*/
	rc = spi_add_device(spi);
	if (rc) {
		dev_err(&master->dev, "spi_device register error %s\n",
			nc->full_name);
		goto err_of_node_put;
	}

	return spi;

err_of_node_put:
	of_node_put(nc);
err_out:
	spi_dev_put(spi);
	return ERR_PTR(rc);
}

生成了spi设备之后,会使用spi_match_device()匹配对应的spi driver。匹配成功之后生成对应的spi设备节点。

 

补充几点最近的发现:(针对于freescale im8mq 内核版本:linux-4.9.88)

1、spi节点下不能定义两个使用同一个片选信号的节点,如果有相同的节点会出现其中一个结点无效的情况。(未具体分析源码)

2、在spi节点下可声明除spi相关节点之外的节点,gpio的初始化需要放入spi根节点的pinctrl中。并且需要注意使用的io管脚不能在其他pinctrl节点中出现,不然会造成节点初始化失败的情况

		pinctrl_ecspi2: ecspi2grp {
			fsl,pins = <
				MX8MQ_IOMUXC_ECSPI2_SS0_GPIO5_IO13   0x16
				MX8MQ_IOMUXC_ECSPI2_MOSI_ECSPI2_MOSI 0x16
				MX8MQ_IOMUXC_ECSPI2_MISO_ECSPI2_MISO  0x16
				MX8MQ_IOMUXC_ECSPI2_SCLK_ECSPI2_SCLK  0x1816
				MX8MQ_IOMUXC_NAND_RE_B_GPIO3_IO15   0x16
			>;
		};

		pinctrl_uart3: uart3grp {
			fsl,pins = <
				MX8MQ_IOMUXC_UART3_TXD_UART3_DCE_TX		0x49        /* UART3_TXD */
				MX8MQ_IOMUXC_UART3_RXD_UART3_DCE_RX		0x49        /* UART3_RXD */
				MX8MQ_IOMUXC_ECSPI1_MISO_UART3_DCE_CTS_B	0x49    /* ECSPI1_MISO UART3_CTS */
				MX8MQ_IOMUXC_ECSPI1_SS0_UART3_DCE_RTS_B		0x49    /* ECSPI1_SS0 UART3_RTS */
				//MX8MQ_IOMUXC_NAND_RE_B_GPIO3_IO15   0x56          /*需要屏蔽此处相同的管脚*/
				MX8MQ_IOMUXC_GPIO1_IO00_ANAMIX_REF_CLK_32K 0x14      /* REF_CLK_32K */
			>;
		};

3、在spi设备匹配时会自动处理节点中的中断号,不需要自己处理了(下列函数位于driver/spi/spi.c

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
	struct spi_device		*spi = to_spi_device(dev);
	int ret;

	ret = of_clk_set_defaults(dev->of_node, false);
	if (ret)
		return ret;

	if (dev->of_node) {
		spi->irq = of_irq_get(dev->of_node, 0); //获取中断号 
		if (spi->irq == -EPROBE_DEFER)
			return -EPROBE_DEFER;
		if (spi->irq < 0)
			spi->irq = 0;
	}

	ret = dev_pm_domain_attach(dev, true);
	if (ret != -EPROBE_DEFER) {
		ret = sdrv->probe(spi);
		if (ret)
			dev_pm_domain_detach(dev, true);
	}

	return ret;
}

 

你可能感兴趣的:(设备树)