- RAID的介绍和实战操作
一RAID的介绍RAID(RedundantAarryofIndependentDisks):廉价磁盘冗余阵列是一种通过将多个物理磁盘组合成一个逻辑单元来提高数据存储性能、可靠性或两者兼顾的技术。作用:提高性能:通过并行读写(数据分块)加速数据访问。增强容错能力:通过冗余数据(如镜像或校验)防止磁盘故障导致的数据丢失。扩展存储容量:将多个磁盘合并为更大逻辑单元。(简单说就是提高容错以及读写速率)类
- Pandas 学习教程
_pass_
Data-Alaysispandas信息可视化
目录定义基本操作一维数组操作二维数组操作数据选择过滤数据处理数据清洗数据转换数据分析排序分组聚合数据透视表高级操作合并数据时间序列处理自定义函数调用数据可视化集成数据导出和导入大数据分块处理定义全称:'paneldata'and'pythondataanalysis'Analy:Series(一维数据)、DataFrame(二维数据)主要应用:数据清洗:处理缺失数据、重复数据等数据转换:改变数据的
- Semantic text 就是那么强大,还附带一包( BBQ )薯片!配有可配置的分块设置和索引选项。
Elastic 中国社区官方博客
ElasticsearchAI大数据elasticsearch搜索引擎全文检索人工智能ai图搜索
作者:来自ElasticKathleenDeRusso语义文本搜索现在可以自定义,支持可配置的分块设置和索引选项,用于自定义向量量化,使semantic_text在专业用例中更强大。Elasticsearch拥有大量新功能,帮助你为你的用例构建最佳搜索解决方案。深入查看我们的示例笔记本以了解更多信息,开始免费云试用,或者立即在本地机器上体验Elastic。随着Elasticsearch8.18和9
- RAG实战指南 Day 11:文本分块策略与最佳实践
在未来等你
RAG实战指南RAG检索增强生成文本分块语义分割文档处理NLP人工智能
【RAG实战指南Day11】文本分块策略与最佳实践文章标签RAG,检索增强生成,文本分块,语义分割,文档处理,NLP,人工智能,大语言模型文章简述文本分块是RAG系统构建中的关键环节,直接影响检索准确率。本文深入解析5种主流分块技术:1)固定大小分块的实现与调优技巧;2)基于语义的递归分割算法;3)文档结构感知的分块策略;4)LLM增强的智能分块方法;5)多模态混合内容处理方案。通过电商知识库和科
- 6. ETL Pipeline-SpringAI实战
起凡7
SpringAIetl嵌入式实时数据库aispring语言模型
ETLPipelineETL是提取、转换、加载的缩写,从原始的文档到数据库需要经历提取(.doc、.ppt、.xlsx等)、转换(数据结构化、清理数据、数据分块)、写入向量数据库。这个过程可以进行多种处理,确保最后的数据适合AI问答。SpringAI提供了ETL框架。它是搭建知识库框架的基石。框架介绍DocumentReader:文档读取器,读取文档,比如PDF、Word、Excel等。如:Jso
- Vulkan多线程录制Command Buffer高效指南
你一身傲骨怎能输
渲染管线CommandBuffer
文章摘要Vulkan支持多线程并行录制CommandBuffer以提升CPU效率,需遵循以下原则:每个线程使用独立CommandPool避免竞争合理分配渲染任务确保负载均衡避免线程间共享资源修改主线程统一提交所有CommandBuffer实现时需为每个线程创建独立CommandPool和CommandBuffer,任务分块后多线程并行录制,最后同步提交。注意资源隔离、同步机制及CommandPoo
- 区间求最值问题高效解决方法
东皇太星
python
对于区间求最值场景,如果区间不定长度的,可以使用稀疏表进行求解,如果区间是固定长度的,则可以使用分块的思想(与稀疏表原理类似),都是通过压缩状态个数,1关于稀疏表的原理详见:稀疏表(SparseTable,ST原理及应用场景下面是一个稀疏表的python实现classSolution:def__init__(self,nums):self.nums=numsself.init_value=-999
- 大图处理优化:低分加载、Lazy Decode 与缩放算法加速实践
观熵
影像技术全景图谱:架构调优与实战算法影像Camera
大图处理优化:低分加载、LazyDecode与缩放算法加速实践关键词:大图加载优化、LazyDecode、Region解码、缩放算法、Bitmap分块、滑动加载、内存控制、图像性能优化摘要:在相册、图片浏览器、拍摄预览和编辑器中,用户经常会处理分辨率高达上千万像素的照片(如48MP、64MP、RAW文件等),这类“大图”在加载、缩放、平移过程中容易造成内存抖动、页面卡顿甚至OOM崩溃。本篇文章将围
- 计算机视觉中的Transformer:ViT模型详解与代码实现
AI大模型应用工坊
计算机视觉transformer人工智能ai
计算机视觉中的Transformer:ViT模型详解与代码实现关键词:计算机视觉、Transformer、ViT、自注意力机制、图像分块摘要:传统卷积神经网络(CNN)统治计算机视觉领域多年,但2020年一篇《AnImageisWorth16x16Words:TransformersforImageRecognitionatScale》的论文打破了这一格局——它将NLP领域的Transformer
- FPGA实现JPEG编码器的完整项目指南
本文还有配套的精品资源,点击获取简介:JPEG编码是一种广泛使用的数字图像压缩技术,通过在FPGA上实现该编码器,可以为嵌入式系统提供高效的图像处理。FPGA的可编程逻辑单元使其成为实现JPEG编码的理想平台。实现过程包括颜色空间转换、分块、离散余弦变换(DCT)、量化和熵编码等关键步骤。此外,testbench仿真用于验证设计的功能和性能,而资源优化确保了设计的高效性和低功耗。该实现过程需要深入
- 【Java面试】10GB,1GB内存,如何排序?
用心分享技术
Java面试题java面试
一、外部排序步骤1️⃣分块排序(分割阶段)步骤:将10GB文件分割为多个内存可容纳的小块(如每个块900MB,共约11块),避免内存溢出。逐块读取到内存,使用高效排序算法(如Collections.sort()或Arrays.sort())排序。将排序后的块写入临时文件,生成11个有序子文件。关键代码:ListsplitAndSort(Fileinput)throwsIOException{Lis
- 大文件上传类设计(OC实现)
瓜子三百克
iOS开发iosoracleobjective-c
下面我将设计一个支持断点续传、多线程上传的大文件上传类,采用Objective-C实现,考虑线程安全、数据库持久化和高效上传。设计概览类文件划分FileUploadManager.h/m-上传任务管理中心FileUploadTask.h/m-单个上传任务控制ChunkUploadOperation.h/m-分块上传操作UploadDatabaseManager.h/m-数据库操作FileChunk
- Advanced RAG:下一代检索增强生成技术详解
北辰alk
AI人工智能
文章目录一、核心演进维度二、关键技术组件1.智能检索子系统2.动态知识管理3.生成控制器三、核心增强技术1.递归检索(RecursiveRetrieval)2.假设性检索(HypotheticalDocumentEmbedding)3.自适应分块(AdaptiveChunking)四、生产级架构设计完整系统架构关键优化点五、典型应用场景1.专业领域问答系统2.企业知识中枢3.实时决策支持六、评估指
- 【LLaMA 3实战:检索增强】13、LLaMA 3+RAG精准问答系统优化全指南:从检索增强到可信度提升实战
无心水
LLaMA3模型实战专栏llamaLLaMA3对话能力全解析LLaMA3AI大模型LLaMa3实战程序员的AI开发第一课AI入门
一、RAG赋能LLaMA问答系统的核心价值与瓶颈突破(一)准确性提升的三大核心挑战问题类型典型表现传统方案局限RAG+LLaMA3解决方案知识滞后型错误回答包含过时技术细节依赖模型预训练更新动态检索最新文档库上下文误解曲解问题意图或检索内容固定分块导致语义断裂语义感知分块+动态查询扩展事实幻觉虚构不存在的概念或数据缺乏外部事实校验溯源标注+多模型交叉验证(二)RAG与LLaMA3的协同优势动态知识
- RAG 每日一技(一):你的第一步就走错了?聊聊最基础的文本分块
ezl1fe
RAG每日一技人工智能后端语言模型
前言兄弟们,最近大模型是真火啊!但光火有什么用,咱得把它用在自己的项目里,解决实际问题才算牛。于是很多人撸起袖子就开干,想让大模型能回答自己文档、知识库里的问题。理想很丰满:我扔一堆文档进去,模型“嗖”一下就学会了,然后就有问必答,跟专家一样。现实很骨感:不管怎么喂数据,模型要么回答得牛头不对马嘴,要么干脆说“我不知道”。是不是感觉很熟悉?问题到底出在哪?很多时候,问题并非出在模型本身,而是出在了
- RAG系列:提升RAG检索力:三大Query变形术,助你玩转AI知识检索!
数智前沿
数字化转型人工智能RAG
之前的帖子大多在优化向量化的过程,让文本内容分块更合理和更精准,本篇重点介绍使用RAG时如何优化提示词,以提高查询结果的精准度!一、RAG的“灵魂拷问”:你真的会提问吗?在AI时代,信息检索的效率和质量,80%取决于你“怎么问”。RAG系统的本质,就是“你问得好,我答得妙”。但现实往往是——用户提问:“AI会抢我饭碗吗?”检索系统:一脸懵逼,给你扔来一堆“AI是什么”“就业趋势”……用户:???这
- 莫队算法 —— 将暴力玩出花
秒啦
算法
莫队算法——将暴力玩出花一、为什么需要莫队?——暴力法的瓶颈我们已经学会了用分块处理一些在线的区间问题。现在,我们来看一类特殊的离线区间查询问题。“离线”意味着我们可以把所有查询先读进来,再按我们喜欢的顺序去处理它们。思考一个问题:给定一个长度为N的数组,M次询问。每次询问一个区间[l,r],问区间内有多少种数字至少出现了2次?那我们回到最朴素的暴力。纯暴力:对于每个询问(l,r),都for一遍,
- 响应式API和非响应式API
响应式API与非响应式API的核心区别在于数据流处理方式、触发机制、资源利用率以及适用场景。以下是具体对比分析:一、数据流与处理模式响应式API异步与事件驱动:数据流通过事件触发自动处理,无需手动干预。例如,当数据源(如股票价格)更新时,系统立即推送变化并触发相应的界面更新[1][8]。流式处理:支持按需分块处理数据,避免一次性加载大量数据到内存。例如,SpringWebFlux的Flux可以每秒
- 华为园区网经典三层架构配置模板(含汇聚、核心)
网络工程师俱乐部
网络网络工程师华为认证
号主:老杨丨11年资深网络工程师,更多网工提升干货,请关注公众号:网络工程师俱乐部这一篇直接上华为园区网的经典三层架构配置模板,重点覆盖:核心层(双核心VRRP)汇聚层(VLAN汇聚+上联三层)接入层简要说明每层配置关键点,按模块分块直给,拎出来就能用适合小中型企业园区网部署场景,拿去直接能拉实验。场景说明&拓扑结构典型企业园区网三层架构:接入层只做VLAN接入,不三层,不配置网关汇聚层做VLAN
- 基础RAG实现,最佳入门选择(四)
人工智能
RAG中的上下文丰富检索,检索增强生成(RAG)通过从外部来源检索相关知识来增强AI响应。传统的检索方法返回孤立的文本块,这可能导致答案不完整。为了解决这个问题,引入了上下文丰富检索,它确保检索到的信息包括相邻的块以获得更好的一致性。-数据摄取:从PDF中提取文本。-带有重叠上下文的分块:将文本拆分为重叠的块以保留上下文。-嵌入创建:将文本块转换为数字表示。-上下文感知检索:检索相关块及其邻居以获
- Chonkie:一个极速且轻量级文本分块的革命者,解锁 RAG 分块多种策略
程序员笑武
prompt语言模型人工智能开源知识图谱
Chonkie是为RAG任务设计的轻量级文本分块库,以快速性能和易于使用著称,旨在解决传统文本分块库的效率和体积问题。核心特点包括多种分块器、9.7MB的轻量级安装、以及优化的分块速度。通过Tiktoken、预计算缓存等技术实现高效分块,性能远超竞争对手。本文详细介绍了Chonkie文档分割库的功能、安装方法、代码示例、设计理念、常见问题解答,助力RAG提升性能。简介Chonkie是一个用于RAG
- 无人机数据处理系统设计与难点
云卓SKYDROID
无人机高科技人工智能科普云卓科技
一、系统设计要点1.数据采集层多源传感器集成支持RGB相机、多光谱/高光谱相机、LiDAR、热成像仪、RTK/PPK定位模块等。自适应采集策略动态调整飞行高度、航速、重叠率,适应地形与任务需求。元数据绑定时间戳、GPS位置、IMU姿态角、传感器参数同步存储。2.数据传输与存储边缘端预处理实时压缩:使用H.265或JPEG2000降低传输带宽。数据分块:将大文件拆分为时空分块。混合存储架构plain
- 前端vue js 使用插件 spark-md5 计算文件MD5值并封装成Promise异步调用方法
低级前端
Vue学习Vue3学习+实战uniappjavascript前端vue.jsspark开发语言
1.依赖:需要安装spark-md5npminstall--savespark-md52.代码分析1.功能:该函数接收一个File对象,将其分块(每块2MB)读取,并使用spark-md5计算整个文件的MD5哈希值。返回一个Promise,成功时解析为MD5字符串,失败时拒绝并返回错误信息。2.关键点:分块处理:通过FileReader逐块读取文件,避免一次性加载大文件导致内存问题。兼容性:处理了
- OPENPPP2 内置 SIMD-AES-128-CFB 算法实现分析及优化路线
liulilittle
MarkdownExtensionC/C++算法网络协议AES安全密码学网络通信
引用源:OPENPPP2/simd_aes_128_cfb.cpp核心组件结构图AES-128-CFB加密系统密钥扩展CFB加密CFB解密加载初始密钥10轮密钥扩展使用aeskeygenassist字节移位与异或初始化反馈寄存器处理完整块处理部分块初始化反馈寄存器处理完整块处理部分块块加密块加密AES加密核心初始轮密钥加9轮AESENC最终轮AESENCLAST详细流程分析一、密钥扩展流程(aes
- 为 AI 编写文档:最佳实践
llm知识管理写作
Bruce:LLM时代要为AI阅读改变写作习惯。将图片/复杂排版文档转化为LLM可读格式(如Markdown)AI友好写作原则(为AI写作)1.内容清晰、结构化、显式表达2.每段内容应自包含、易分块理解3.使用统一术语,增强语义匹配4.图表信息应有文字说明5.使用语义HTML/Markdown,避免PDF、复杂UI6.内容层级清晰,上下文明确7.明确前提与步骤,不假设读者已知8.记录具体错误信息,
- Vue3组合式API深度解析:模式、实践与架构级应用
桂月二二
架构
一、组合式API设计哲学1.1响应式编程演进1.2组合式特性对比表特性选项式API组合式API优势分析代码组织按选项分块逻辑聚合高内聚低耦合类型推导有限支持完整TS支持开发体验提升60%逻辑复用Mixins混入自定义Hook降低复杂度50%生命周期固定钩子动态注册灵活度提升80%响应式追踪隐式追踪显式声明可维护性增强70%二、核心响应式机制剖析2.1响应式系统实现//简化的响应式核心实现class
- 大模型(LLMs)RAG 版面分析------文本分块面
xianghan收藏册
AI大模型人工智能transformerchatgpt自然语言处理
一、为什么需要对文本分块?使用大型语言模型(LLM)时,切勿忽略文本分块的重要性,其对处理结果的好坏有重大影响。考虑以下场景:你面临一个几百页的文档,其中充满了文字,你希望对其进行摘录和问答式处理。在这个流程中,最初的一步是提取文档的嵌入向量,但这样做会带来几个问题:信息丢失的风险:试图一次性提取整个文档的嵌入向量,虽然可以捕捉到整体的上下文,但也可能会忽略掉许多针对特定主题的重要信息,这可能会导
- 大模型(LLMs)RAG 版面分析——文本分块面
AI Echoes
mysql数据库
大模型(LLMs)RAG版面分析——文本分块面一、为什么需要对文本分块?二、能不能介绍一下常见的文本分块方法?2.1一般的文本分块方法2.2正则拆分的文本分块方法2.3SpacyTextSplitter方法2.4基于langchain的CharacterTextSplitter方法2.5基于langchain的递归字符切分方法2.6HTML文本拆分方法2.7Mrrkdown文本拆分方法2.8Pyt
- 【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)Product Quantization?
985小水博一枚呀
人工智能学习数据库算法语言模型
【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)ProductQuantization?【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)ProductQuantization?文章目录【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)ProductQuantization?前言1.算法原理1.1向量分块与
- Grounding Language Model with Chunking‑Free In‑Context Retrieval (CFIC)
steven~~~
nlp语言模型人工智能自然语言处理
一读即懂这篇ACL2024文章介绍了CFIC,一种新的无块文档上下文检索方法,用于提升Retrieval‑Augmented Generation(RAG)任务的“证据定位”能力。问题是什么?传统RAG会先将文档分块(chunk)再检索,但这种分块会打断语义连贯性、引入噪音,并限制检索精度([aclanthology.org][1],[chatpaper.com][2])。CFIC的创新做法?跳过
- 矩阵求逆(JAVA)利用伴随矩阵
qiuwanchi
利用伴随矩阵求逆矩阵
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(利用伴随矩阵)
* @author 邱万迟
- 单例(Singleton)模式
aoyouzi
单例模式Singleton
3.1 概述 如果要保证系统里一个类最多只能存在一个实例时,我们就需要单例模式。这种情况在我们应用中经常碰到,例如缓存池,数据库连接池,线程池,一些应用服务实例等。在多线程环境中,为了保证实例的唯一性其实并不简单,这章将和读者一起探讨如何实现单例模式。 3.2
- [开源与自主研发]就算可以轻易获得外部技术支持,自己也必须研发
comsci
开源
现在国内有大量的信息技术产品,都是通过盗版,免费下载,开源,附送等方式从国外的开发者那里获得的。。。。。。
虽然这种情况带来了国内信息产业的短暂繁荣,也促进了电子商务和互联网产业的快速发展,但是实际上,我们应该清醒的看到,这些产业的核心力量是被国外的
- 页面有两个frame,怎样点击一个的链接改变另一个的内容
Array_06
UIXHTML
<a src="地址" targets="这里写你要操作的Frame的名字" />搜索
然后你点击连接以后你的新页面就会显示在你设置的Frame名字的框那里
targerts="",就是你要填写目标的显示页面位置
=====================
例如:
<frame src=&
- Struts2实现单个/多个文件上传和下载
oloz
文件上传struts
struts2单文件上传:
步骤01:jsp页面
<!--在进行文件上传时,表单提交方式一定要是post的方式,因为文件上传时二进制文件可能会很大,还有就是enctype属性,这个属性一定要写成multipart/form-data,不然就会以二进制文本上传到服务器端-->
<form action="fileUplo
- 推荐10个在线logo设计网站
362217990
logo
在线设计Logo网站。
1、http://flickr.nosv.org(这个太简单)
2、http://www.logomaker.com/?source=1.5770.1
3、http://www.simwebsol.com/ImageTool
4、http://www.logogenerator.com/logo.php?nal=1&tpl_catlist[]=2
5、ht
- jsp上传文件
香水浓
jspfileupload
1. jsp上传
Notice:
1. form表单 method 属性必须设置为 POST 方法 ,不能使用 GET 方法
2. form表单 enctype 属性需要设置为 multipart/form-data
3. form表单 action 属性需要设置为提交到后台处理文件上传的jsp文件地址或者servlet地址。例如 uploadFile.jsp 程序文件用来处理上传的文
- 我的架构经验系列文章 - 前端架构
agevs
JavaScriptWeb框架UIjQuer
框架层面:近几年前端发展很快,前端之所以叫前端因为前端是已经可以独立成为一种职业了,js也不再是十年前的玩具了,以前富客户端RIA的应用可能会用flash/flex或是silverlight,现在可以使用js来完成大部分的功能,因此js作为一门前端的支撑语言也不仅仅是进行的简单的编码,越来越多框架性的东西出现了。越来越多的开发模式转变为后端只是吐json的数据源,而前端做所有UI的事情。MVCMV
- android ksoap2 中把XML(DataSet) 当做参数传递
aijuans
android
我的android app中需要发送webservice ,于是我使用了 ksop2 进行发送,在测试过程中不是很顺利,不能正常工作.我的web service 请求格式如下
[html]
view plain
copy
<Envelope xmlns="http://schemas.
- 使用Spring进行统一日志管理 + 统一异常管理
baalwolf
spring
统一日志和异常管理配置好后,SSH项目中,代码以往散落的log.info() 和 try..catch..finally 再也不见踪影!
统一日志异常实现类:
[java]
view plain
copy
package com.pilelot.web.util;
impor
- Android SDK 国内镜像
BigBird2012
android sdk
一、镜像地址:
1、东软信息学院的 Android SDK 镜像,比配置代理下载快多了。
配置地址, http://mirrors.neusoft.edu.cn/configurations.we#android
2、北京化工大学的:
IPV4:ubuntu.buct.edu.cn
IPV4:ubuntu.buct.cn
IPV6:ubuntu.buct6.edu.cn
- HTML无害化和Sanitize模块
bijian1013
JavaScriptAngularJSLinkySanitize
一.ng-bind-html、ng-bind-html-unsafe
AngularJS非常注重安全方面的问题,它会尽一切可能把大多数攻击手段最小化。其中一个攻击手段是向你的web页面里注入不安全的HTML,然后利用它触发跨站攻击或者注入攻击。
考虑这样一个例子,假设我们有一个变量存
- [Maven学习笔记二]Maven命令
bit1129
maven
mvn compile
compile编译命令将src/main/java和src/main/resources中的代码和配置文件编译到target/classes中,不会对src/test/java中的测试类进行编译
MVN编译使用
maven-resources-plugin:2.6:resources
maven-compiler-plugin:2.5.1:compile
&nbs
- 【Java命令二】jhat
bit1129
Java命令
jhat用于分析使用jmap dump的文件,,可以将堆中的对象以html的形式显示出来,包括对象的数量,大小等等,并支持对象查询语言。 jhat默认开启监听端口7000的HTTP服务,jhat是Java Heap Analysis Tool的缩写
1. 用法:
[hadoop@hadoop bin]$ jhat -help
Usage: jhat [-stack <bool&g
- JBoss 5.1.0 GA:Error installing to Instantiated: name=AttachmentStore state=Desc
ronin47
进到类似目录 server/default/conf/bootstrap,打开文件 profile.xml找到: Xml代码<bean
name="AttachmentStore"
class="org.jboss.system.server.profileservice.repository.AbstractAtta
- 写给初学者的6条网页设计安全配色指南
brotherlamp
UIui自学ui视频ui教程ui资料
网页设计中最基本的原则之一是,不管你花多长时间创造一个华丽的设计,其最终的角色都是这场秀中真正的明星——内容的衬托
我仍然清楚地记得我最早的一次美术课,那时我还是一个小小的、对凡事都充满渴望的孩子,我摆放出一大堆漂亮的彩色颜料。我仍然记得当我第一次看到原色与另一种颜色混合变成第二种颜色时的那种兴奋,并且我想,既然两种颜色能创造出一种全新的美丽色彩,那所有颜色
- 有一个数组,每次从中间随机取一个,然后放回去,当所有的元素都被取过,返回总共的取的次数。写一个函数实现。复杂度是什么。
bylijinnan
java算法面试
import java.util.Random;
import java.util.Set;
import java.util.TreeSet;
/**
* http://weibo.com/1915548291/z7HtOF4sx
* #面试题#有一个数组,每次从中间随机取一个,然后放回去,当所有的元素都被取过,返回总共的取的次数。
* 写一个函数实现。复杂度是什么
- struts2获得request、session、application方式
chiangfai
application
1、与Servlet API解耦的访问方式。
a.Struts2对HttpServletRequest、HttpSession、ServletContext进行了封装,构造了三个Map对象来替代这三种对象要获取这三个Map对象,使用ActionContext类。
----->
package pro.action;
import java.util.Map;
imp
- 改变python的默认语言设置
chenchao051
python
import sys
sys.getdefaultencoding()
可以测试出默认语言,要改变的话,需要在python lib的site-packages文件夹下新建:
sitecustomize.py, 这个文件比较特殊,会在python启动时来加载,所以就可以在里面写上:
import sys
sys.setdefaultencoding('utf-8')
&n
- mysql导入数据load data infile用法
daizj
mysql导入数据
我们常常导入数据!mysql有一个高效导入方法,那就是load data infile 下面来看案例说明
基本语法:
load data [low_priority] [local] infile 'file_name txt' [replace | ignore]
into table tbl_name
[fields
[terminated by't']
[OPTI
- phpexcel导入excel表到数据库简单入门示例
dcj3sjt126com
PHPExcel
跟导出相对应的,同一个数据表,也是将phpexcel类放在class目录下,将Excel表格中的内容读取出来放到数据库中
<?php
error_reporting(E_ALL);
set_time_limit(0);
?>
<html>
<head>
<meta http-equiv="Content-Type"
- 22岁到72岁的男人对女人的要求
dcj3sjt126com
22岁男人对女人的要求是:一,美丽,二,性感,三,有份具品味的职业,四,极有耐性,善解人意,五,该聪明的时候聪明,六,作小鸟依人状时尽量自然,七,怎样穿都好看,八,懂得适当地撒娇,九,虽作惊喜反应,但看起来自然,十,上了床就是个无条件荡妇。 32岁的男人对女人的要求,略作修定,是:一,入得厨房,进得睡房,二,不必服侍皇太后,三,不介意浪漫蜡烛配盒饭,四,听多过说,五,不再傻笑,六,懂得独
- Spring和HIbernate对DDM设计的支持
e200702084
DAO设计模式springHibernate领域模型
A:数据访问对象
DAO和资源库在领域驱动设计中都很重要。DAO是关系型数据库和应用之间的契约。它封装了Web应用中的数据库CRUD操作细节。另一方面,资源库是一个独立的抽象,它与DAO进行交互,并提供到领域模型的“业务接口”。
资源库使用领域的通用语言,处理所有必要的DAO,并使用领域理解的语言提供对领域模型的数据访问服务。
- NoSql 数据库的特性比较
geeksun
NoSQL
Redis 是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。目前由VMware主持开发工作。
1. 数据模型
作为Key-value型数据库,Redis也提供了键(Key)和值(Value)的映射关系。除了常规的数值或字符串,Redis的键值还可以是以下形式之一:
Lists (列表)
Sets
- 使用 Nginx Upload Module 实现上传文件功能
hongtoushizi
nginx
转载自: http://www.tuicool.com/wx/aUrAzm
普通网站在实现文件上传功能的时候,一般是使用Python,Java等后端程序实现,比较麻烦。Nginx有一个Upload模块,可以非常简单的实现文件上传功能。此模块的原理是先把用户上传的文件保存到临时文件,然后在交由后台页面处理,并且把文件的原名,上传后的名称,文件类型,文件大小set到页面。下
- spring-boot-web-ui及thymeleaf基本使用
jishiweili
springthymeleaf
视图控制层代码demo如下:
@Controller
@RequestMapping("/")
public class MessageController {
private final MessageRepository messageRepository;
@Autowired
public MessageController(Mes
- 数据源架构模式之活动记录
home198979
PHP架构活动记录数据映射
hello!架构
一、概念
活动记录(Active Record):一个对象,它包装数据库表或视图中某一行,封装数据库访问,并在这些数据上增加了领域逻辑。
对象既有数据又有行为。活动记录使用直截了当的方法,把数据访问逻辑置于领域对象中。
二、实现简单活动记录
活动记录在php许多框架中都有应用,如cakephp。
<?php
/**
* 行数据入口类
*
- Linux Shell脚本之自动修改IP
pda158
linuxcentosDebian脚本
作为一名
Linux SA,日常运维中很多地方都会用到脚本,而服务器的ip一般采用静态ip或者MAC绑定,当然后者比较操作起来相对繁琐,而前者我们可以设置主机名、ip信息、网关等配置。修改成特定的主机名在维护和管理方面也比较方便。如下脚本用途为:修改ip和主机名等相关信息,可以根据实际需求修改,举一反三!
#!/bin/sh
#auto Change ip netmask ga
- 开发环境搭建
独浮云
eclipsejdktomcat
最近在开发过程中,经常出现MyEclipse内存溢出等错误,需要重启的情况,好麻烦。对于一般的JAVA+TOMCAT项目开发,其实没有必要使用重量级的MyEclipse,使用eclipse就足够了。尤其是开发机器硬件配置一般的人。
&n
- 操作日期和时间的工具类
vipbooks
工具类
大家好啊,好久没有来这里发文章了,今天来逛逛,分享一篇刚写不久的操作日期和时间的工具类,希望对大家有所帮助。
/*
* @(#)DataFormatUtils.java 2010-10-10
*
* Copyright 2010 BianJing,All rights reserved.
*/
package test;
impor