- 拉格朗日插值多项式(Lagrange Interpolation)原理 + Python 代码
Illusionna.
python
原理部分见:拉格朗日插值—Homev1.2023.11文档https://illusionna.readthedocs.io/zh/latest/projects/Mathematics/Numerical%20Analysis/%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5%E6%8F%92%E5%80%BC/Lagrange.html代码依赖第三方库:1.numpy2
- Numpy 自学笔记(一)
.Queenie.
numpy小白自学笔记
@numpyNumpy自学笔记(一)更加详细的学习资料请见:https://www.numpy.org.cn/user/一.基础知识NumPy的数组类被调用ndarray。它也被别名所知array。请注意,numpy.array这与标准Python库类不同array.array,后者只处理一维数组并提供较少的功能。ndarray对象更重要的属性是:importnumpyasnpa=np.arang
- 基于PyTorch的深度学习4——使用numpy实现机器学习vs使用Tensor及Antograd实现机器学习
Wis4e
深度学习机器学习pytorch
首先,给出一个数组x,然后基于表达式y=3x2+2,加上一些噪音数据到达另一组数据y。然后,构建一个机器学习模型,学习表达式y=wx2+b的两个参数w、b。利用数组x,y的数据为训练数据。最后,采用梯度梯度下降法,通过多次迭代,学习到w、b的值。以下为具体步骤:1)导入需要的库。importnumpyasnp%matplotlibinlinefrommatplotlibimportpyplotas
- Pytorch 第九回:卷积神经网络——ResNet模型
Start_Present
pytorchcnnpython分类深度学习
Pytorch第九回:卷积神经网络——ResNet模型本次开启深度学习第九回,基于Pytorch的ResNet卷积神经网络模型。这是分享的第四个卷积神经网络模型。该模型是基于解决因网络加深而出现的梯度消失和网络退化而进行设计的。接下来给大家分享具体思路。本次学习,借助的平台是PyCharm2024.1.3,python版本3.11numpy版本是1.26.4,pytorch版本2.0.0+cu11
- 实战1. 利用Pytorch解决 CIFAR 数据集中的图像分类为 10 类的问题
啥都鼓捣的小yao
深度学习pytorch分类人工智能深度学习
实战1.利用Pytorch解决CIFAR数据集中的图像分类为10类的问题加载数据建立模型模型训练测试评估你的任务是建立一个用于CIFAR图像分类的神经网络,并实现分类质量>0.5。注意:因为我们实战1里只讨论最简单的神经网络构建,所以准确率达到0.5以上就符合我们的目标,后面会不断学习新的模型进行优化CIFAR的数据集如下图所示:我们大概所需要的功能包如下:importnumpyasnpimpor
- python可應用在金融分析的那一個方面,如何部署在linux server上面。
蠟筆小新工程師
金融
Python在金融分析中應用廣泛,以下是幾個主要方面:###1.**數據處理與分析**-使用**Pandas**和**NumPy**等庫來處理和分析大規模數據集,進行清理、轉換和統計運算。-舉例:處理歷史市場數據,分析價格趨勢、交易量等。###2.**機器學習與預測**-使用**scikit-learn**、**TensorFlow**或**PyTorch**建立模型進行股票價格預測、信用風險評估
- pyscript的用法
新时代_打工人
pythonpython开发语言前端框架
PyScript核心特性Pythoninthebrowser:启用drop-incontent、外部文件托管(基于Pyodide项目),以及不依赖服务器端配置的应用程序托管。Python生态:提供流行的Python和科学计算软件包(例如numpy,pandas,scikit-learn等)。PythonwithJavaScript:在Python和JavaScript对象和命名空间之间进行双向通信
- 今天这道题看了好久的题解,才理解意思,看来有的时候刷题也要积累一些知识。
suohanfjiusbis
pythonleetcode算法
classSolution:defgameOfLife(self,board:List[List[int]])->None:"""Donotreturnanything,modifyboardin-placeinstead."""importnumpyasnpr,c=len(board),len(board[0])board_exp=np.array([[0for_inrange(c+2)]for
- dataframe数据常用python操作
shlay
统计分析软件python信息可视化数据分析
dataframe数据常用python操作dataframe数据常用知识点1.创建dataframe1.1使用字典创建DataFrame:1.2使用列表创建DataFrame:1.3使用numpy数组创建DataFrame:1.4从TXT文件中创建DataFrame:1.5从CSV文件中创建DataFrame:1.6从Excel文件中创建DataFrame:2.dataframe数据保存3.dat
- Python数据可视化——Matplotlib的基本绘图:图形、轴、标签
大数据张老师
python信息可视化matplotlib
Matplotlib的绘图系统是由多个层次组成的,它的基本结构包括图形(Figure)、坐标轴(Axes)、刻度(Ticks)、标签(Labels)等多个部分。理解这些基本组件,有助于更好地使用Matplotlib绘制和优化图表。在本节中,我们将结合NumPy数组,详细讲解Matplotlib的基本结构,并展示它们在实际项目中的应用。图形(Figure):整个绘图的容器在Matplotlib中,图
- 使用Python 打造专属自己的屏幕录制工具:使用NumPy、PIL和OpenCV的完整指南
LIY若依
opencv人工智能python应用开发录屏软件
简介在这篇博客中,我们将介绍如何使用NumPy、PIL和OpenCV创建一个屏幕录制工具。通过逐步解析代码片段,解释每个部分的功能,最终展示完整代码。希望这篇博客能帮助你理解如何实现屏幕录制功能。依赖库在运行代码之前,请确保已安装以下依赖库:NumPyPIL(Pillow)OpenCV可以使用以下命令安装这些库:pipinstallnumpypillowopencv-python步骤1:导入必要的
- OpenCV基础:用Python生成一幅黑白图像
superdont
计算机视觉入门python开发语言opencv人工智能计算机视觉矩阵
OpenCV的基础是处理图像,而图像的基础是矩阵。因此,如何使用好矩阵时非常关键的。下面我们通过一个具体的实例来展示如何通过Python和OpenCV对矩阵进行操作,从而更好地实现对图像的处理。具体要求:使用Python:生成一幅左黑右白的灰度图像,图像大小为16×16像素。借助OpenCV库。输出数值,并显示图像。Python代码下面的程序通过OpenCV、numpy两个库实现构造矩阵,修改特征
- 安装CUDA12.1和torch2.2.1下的DKG
超级无敌大好人
python
1.创建python虚拟环境setNO_PROXY=*condadeactivatecondaenvremove-nfindkgcondacreate-nfindkgpython=3.11condaactivatefindkgcondainstallpackagingsetuptoolspipuninstallnumpycondainstallnumpy=1.24.3请注意,DKG需要python
- 【numpy2】python计算BMI指数、numpy(数组、数据类型、常用属性、常见方法、索引与切片、比较运算符、基本函数、必会函数、随机数模块、赌场案例)
林光虚霁晓
数据分析pythonnumpy开发语言
1python计算BMI指数2numpy中数组的概念3numpy的数据类型4numpy的常用属性5numpy的常见方法6numpy的索引与切片7numpy的比较运算符8numpy的基本函数8.1numpy的必会函数8.2numpy的随机数模块9numpy的赌场案例1python计算BMI指数#身高height=[170,173,178,180,183]#体重weight=[76,65,70,77,
- sklearn库安装
吧啦吧啦吡叭卜
sklearn人工智能python
已经安装了numpy、matplotlib、scipy这些库一直报错×pythonsetup.pyegg_infodidnotrunsuccessfully.│exitcode:1╰─>[15linesofoutput]The'sklearn'PyPIpackageisdeprecated,use'scikit-learn'ratherthan'sklearn'forpipcommands.Her
- numpy版本踩坑总结 持续更新
AI算法网奇
python宝典python基础numpy
目录1.23版本报错module'numpy'hasnoattribute'bool'.协方差矩阵第2次优化:1.23版本影响库smplx报错module'numpy'hasnoattribute'bool'.解决方法:pipinstallnumpy==1.23.2测试版本命令:python-c"importnumpyasnp;print(np.__version__)"
- Python常见的第三方库:requests、numpy、pandas
大数据张老师
pythonnumpypandas
常见的第三方库:requests、numpy、pandasPython拥有丰富的第三方库,涵盖了数据分析、网络爬取、人工智能、科学计算等多个领域。其中,requests、numpy和pandas是最常用的三个库,分别用于网络请求、数值计算和数据处理。本节将详细介绍它们的基本功能,并通过示例代码帮助理解它们的使用方法。requests:处理网络请求的库requests是Python中用于处理HTTP
- 02矩阵运算
依旧阳光的老码农
计算机视觉矩阵线性代数计算机视觉
矩阵运算教案课程目标了解矩阵的基本概念和常见运算。掌握矩阵的加法、乘法、转置、行列式、逆矩阵等运算。结合NumPy进行矩阵运算的编程实践。第一部分:矩阵的基本概念1.1矩阵的定义矩阵(Matrix)是一个m×n的数表,其中:m代表行数(row)n代表列数(column)例如:A=\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}是一个2×3矩阵。第二部分:矩阵的基本运
- python使用pandas创建dataframe仿真数据、将字典数据转化为dataframe
statistics.insight
数据科学持续学习机器学习数据挖掘数据分析人工智能python
python使用pandas创建dataframe仿真数据、将字典数据转化为dataframe目录python使用pandas创建dataframe仿真数据、将字典数据转化为dataframe#导入包和库#python使用pandas创建dataframe仿真数据、将字典数据转化为dataframe#导入包和库importpandasaspdimportnumpyasnp#不显示关于在切片副本上设
- python中的numpy库有什么优缺点_python中关于numpy库的介绍
weixin_34938347
1.Numpy是什么?NumPy(NumericalPython的缩写)是一个开源的Python科学计算库。使用NumPy,就可以很自然地使用数组和矩阵。NumPy包含很多实用的数学函数,涵盖线性代数运算、傅里叶变换和随机数生成等功能。这个库的前身是1995年就开始开发的一个用于数组运算的库。经过了长时间的发展,基本上成了绝大部分Python科学计算的基础包,当然也包括所有提供Python接口的深
- python numpy学习
黄小猿
pythonnumpymeshgrid
目录np.meshgridnp.where1.np.meshgrid可以生成一对协调的点,x=np.arange(-5,5,1)y=np.arange(-5,5,1)xx,yy=np.meshgrid(x,y,sparse=True)xx#输出:array([[-5,-4,-3,-2,-1,0,1,2,3,4]])yy#输出:array([[-5],[-4],[-3],[-2],[-1],[0],
- 深度学习主流经典框架PyTorch(day2)
inquisitor.dom
深度学习pytorch人工智能
五、Tensor数据转换5.1张量转numpy浅拷贝调用numpy()方法可以把Tensor转换为Numpy,此时内存是共享的。#张量转numpydata_tensor=torch.tensor([[1,2,3],[4,5,6]])data_numpy=data_tensor.numpy()print(type(data_tensor),type(data_numpy))#他们内存是共享的data
- conda的作用
一只积极向上的小咸鱼
conda
一概览Conda是一个开源的包管理和环境管理工具,主要用于Python及其他编程语言的依赖管理和环境隔离。它的核心作用有以下几点:1.包管理可以安装、更新、卸载Python及其依赖包(类似于pip)。支持多语言(不仅限于Python,还支持C/C++,R,Ruby,Lua等)。依赖自动管理,能解决复杂的库依赖问题,例如:condainstallnumpypandas2.环境管理允许创建多个独立的虚
- 【AI学习从零至壹】pytorch基础
flyyyya
AI算法人工智能学习pytorch
pytorch基础pytorch基础张量(Tensor)张量的属性张量的索引和切⽚:张量的拼接张量的算数运算单元素张量In-place操作与numpy之间的转换张量到numpy数组计算图静态计算图动态计算图pytorch计算图可视化pytorch基础PyTorch是⼀个开源的深度学习框架,由Facebook的⼈⼯智能研究团队开发和维护,在学术界和⼯业界都得到了⼴泛应⽤。张量(Tensor)张量(T
- 庐山派k230使用串口通信发送数据驱动四个轮子并且实现摄像头画面识别目标检测功能
晨兆
python开发语言
我使用的是UART1frommachineimportUART,FPIOA,Pinimportosimportujsonimportaicubefrommedia.sensorimport*frommedia.displayimport*frommedia.mediaimport*fromtimeimport*importnncase_runtimeasnnimportulab.numpyasnp
- 【路径规划】二维Dijkstra启发式改进算法
神精兵院院长
Python算法算法python动态规划
我们使用了A*算法的启发式(曼哈顿距离)来改进Dijkstra算法的性能。当我们将邻居节点添加到优先队列时,我们使用了distance+heuristic作为优先级,这样我们可以更快地找到通往目标节点的路径。importheapqimportnumpyasnpdefheuristic(a,b):(x1,y1)=a(x2,y2)=breturnabs(x1-x2)+abs(y1-y2)#使用曼哈顿距
- 【图像去噪】基础知识之加噪 | 给图像加噪的若干种方式,包括加高斯白噪声(AWGN)、泊松-高斯噪声、模拟真实噪声(SIDD、DND)等
十小大
人工智能计算机视觉深度学习图像处理图像去噪pythonpytorch
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言加高斯噪声(AWGN)在numpy上加在Tensor上加完整代码加其他噪声(模拟真实世界的噪声)加随机散粒噪声和真实噪声(Possion-Gaussian)加SIDD
- python求函数最值的方法_python计算波峰波谷值的方法(极值点)
weixin_39542742
python求函数最值的方法
python求极值点主要用到scipy库。1.首先可先选择一个函数或者拟合一个函数,这里选择拟合数据:np.polyfitimportpandasaspdimportmatplotlib.pyplotaspltimportnumpyasnpfromscipyimportsignal#滤波等xxx=np.arange(0,1000)yyy=np.sin(xxx*np.pi/180)z1=np.pol
- 基于python的“扫雷”游戏实现
m0_74802518
游戏pythonwindows
一、引言:最近在学习python语言,想着尝试通过python来实现儿时玩过的小游戏,于是从"扫雷"游戏开始,依据自己的理解,编写游戏代码。若有不周到之处,还望大家批评指正。环境配置:python3.12,pygame2.6.1,numpy1.26.4二、效果展示灰色为未揭开的单元,红色表示地雷,绿色表示“插旗”(即认定此单元格为地雷)三、程序思路1.程序框架图如图所示,我们需要创建“扫雷”用的棋
- 深度学习分类回归(衣帽数据集)
何仙鸟
深度学习分类回归
一、步骤1加载数据集fashion_minst2搭建classNeuralNetwork模型3设置损失函数,优化器4编写评估函数5编写训练函数6开始训练7绘制损失,准确率曲线二、代码导包,打印版本号:importmatplotlibasmplimportmatplotlib.pyplotasplt%matplotlibinlineimportnumpyasnpimportsklearnimport
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f