- Cut, Paste and Learn方法解读
wangxinwei2000
深度学习人工智能
Abstract问题背景:标注数据的缺乏:在实例检测任务中,部署物体检测模型的一个主要障碍是缺乏大量标注数据。例如,在一个特定的厨房环境中找到包含实例的大型标注数据集是不太可能的。每当面对新的环境和新的物体实例时,都需要进行昂贵的数据收集和标注工作。研究贡献:解决方法:本文提出了一种简单的方法,可以以最小的努力生成大量标注的实例数据集。关键洞察:研究者的关键洞察是,仅仅确保“局部真实感”(patc
- 在COD领域,图像中提取的高频和低频信息分别代表什么?
Wils0nEdwards
计算机视觉人工智能
在CamouflagedObjectDetection(COD)领域中,图像中的高频和低频信息在特征提取和物体检测中有着不同的含义和作用。COD的本质是解决目标在视觉上与背景高度相似的问题,因此合理利用图像的频率信息(高频和低频)有助于提高检测效果。高频信息高频信息指的是图像中变化迅速的部分,通常包括细节、边缘和纹理等特征。在COD中:高频信息代表图像中的边缘、细节和纹理特征。这些特征对于分割伪装
- 行空板上YOLO和Mediapipe图片物体检测的测试
DFRobot智位机器人
DF创客社区YOLO
Introduction经过前面三篇教程帖子(yolov8n在行空板上的运行(中文),yolov10n在行空板上的运行(中文),Mediapipe在行空板上的运行(中文))的介绍,我们对如何使用官方代码在行空板上运行物体检测的AI模型有了基本的概念,并对常见的模型进行了简单的测试和对比。进一步的,本文将对不同模型的图片物体检查进行详细的对比分析,包括不同输入尺寸、不同模型设置等方面的对比,并提供在
- Azure和Transformers的详细解释
漫天飞舞的雪花
azuremicrosoftpython
AzureAI是微软提供的人工智能(AI)解决方案的集合,旨在帮助开发人员、数据科学家和企业轻松构建和部署智能应用程序。以下是对AzureAI各个方面的详细解释:AzureAI主要组件AzureCognitiveServices(认知服务):计算视觉:包括图像识别、物体检测、人脸识别以及图像标注等。语音服务:包括语音识别、语音合成、说话人识别和语音翻译等。语言理解服务:包括文本分析、语言翻译、情感
- YOLOv8改进 | Conv篇 | YOLOv8引入SAConv模块
小李学AI
YOLOv8有效涨点专栏YOLO深度学习计算机视觉目标检测人工智能
1.SAConv介绍1.1摘要:许多现代物体检测器通过使用三思而后行的机制表现出出色的性能。在本文中,我们在目标检测的主干设计中探索了这种机制。在宏观层面,我们提出了递归特征金字塔,它将特征金字塔网络的额外反馈连接合并到自下而上的骨干层中。在微观层面,我们提出了可切换空洞卷积,它将具有不同空洞率的特征进行卷积,并使用开关函数收集结果。将它们结合起来就形成了DetectoRS,它显着提高了目标检测的
- 华为鸿蒙Core Vision Kit 骨骼检测技术
神码兄弟
华为harmonyos
鸿蒙CoreVisionKit是华为鸿蒙系统中的一个图像处理框架,旨在提供各种计算机视觉功能,包括物体检测、人脸识别、文本识别等。骨骼检测是其中的一项功能,主要用于检测和识别人类身体的骨骼结构。骨骼检测的关键点骨骼点检测:通过骨骼检测功能,可以识别出人体的关键骨骼点,如肩膀、肘部、膝盖等。每个骨骼点都有特定的坐标,可以用于进一步分析人体姿势。姿势估计:在检测到骨骼点后,系统可以进行姿势估计,即通过
- 论文阅读瞎记(四) Cascade R-CNN: Delving into High Quality Object Detection 2017
码大哥
深度学习人工智能
概述在物体检测中1,IOU阈值被用于判定正负样本。在低IOU阈值比如0.5的状态下训练模型经常产生噪音预测,然而检测效果会随着IOU增加而降低。两个主要因素:1.训练时的过拟合,正样本指数消失2.检测器最优IOU与输入假设的不匹配。一个单阶段的物体检测器CascadeR-CNN被提出用于解决这些问题。网络由一个检测序列组成,这些序列训练时会伴随IOU增长从而对FP样本更加有选择性地判别。检测器一个
- 基于yolov8的绝缘子缺陷检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLO
【算法介绍】基于YOLOv8的绝缘子缺陷检测系统是一种利用先进深度学习技术的高效解决方案,旨在提升电力行业中输电线路的维护和监控水平。YOLOv8作为YOLO系列算法的最新版本,具备更高的检测速度和精度,特别适用于实时物体检测任务。该系统通过深入分析并标注绝缘子数据集,训练YOLOv8模型以精确识别输电线上的绝缘子及其缺陷状态。利用多尺度检测、FPN结构以及CSPDarknet网络等技术,YOLO
- 深度学习(十一):YOLOv9之最新的目标检测器解读
从零开始的奋豆
深度学习深度学习人工智能
YOLOv91.YOLOv9:物体检测技术的飞跃发展1.1YOLOv9简介1.2YOLOv9的核心创新1.2.1信息瓶颈:神经网络在抽取相关性时的理论边界1.2.2可逆函数:保留完整的信息流1.2.3对轻型模型的影响:解决信息丢失1.2.4可编程梯度信息(PGI):解决信息瓶颈1.2.5通用高效层聚合网络(GELAN):实现更高的参数利用率和计算效率1.2.6结论:合作与创新2.代码1.YOLOv
- 基于深度学习的自适应架构
SEU-WYL
深度学习dnn深度学习架构人工智能
基于深度学习的自适应架构是一种能够动态调整自身结构和参数的神经网络体系,以更好地适应不同的任务和环境需求。这类架构旨在提高模型的灵活性、效率和泛化能力,特别是在面对资源受限或任务多样化的情况下。以下是对该主题的详细介绍:1.背景与动机任务多样性:在现实世界中,模型可能需要处理各种不同的任务,如图像分类、物体检测、自然语言处理等。传统的固定架构模型往往难以在所有任务上都表现出色。资源受限环境:在边缘
- 挑战杯 基于机器视觉的二维码识别检测 - opencv 二维码 识别检测 机器视觉
laafeer
python
文章目录0简介1二维码检测2算法实现流程3特征提取4特征分类5后处理6代码实现5最后0简介优质竞赛项目系列,今天要分享的是基于机器学习的二维码识别检测-opencv二维码识别检测机器视觉该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1二维码检测物体检测就是对数字图像中一类特定的物体
- 【机器学习案例7】计算机视觉中的小物体检测:基于补丁的方法
suoge223
机器学习实用指南机器学习计算机视觉人工智能
专栏导读作者简介:工学博士,高级工程师,专注于工业软件算法研究本文已收录于专栏:《机器学习实用指南》本专栏旨在提供1.机器学习经典案例及源码;2.开源机器学习训练数据集;3.机器学习前沿专业博文。以案例的形式从实用的角度出发,快速上手机器学习项目,在案例中成长,摆脱按部就班填鸭式教学。欢迎订阅专栏,订阅用户可私聊进入机器学习交流群(知识交流、问题解答),并获赠丰厚的机器学习相关学习资料(教材、源码
- Baumer工业相机堡盟相机彩色相机如何实现白平衡
格林威
工业相机数码相机opencvc++计算机视觉开发语言
项目场景Baumer工业相机堡盟相机是一种高性能、高质量的工业相机,可用于各种应用场景,如物体检测、计数和识别、运动分析和图像处理。Baumer的万兆网相机拥有出色的图像处理性能,可以实时传输高分辨率图像。此外,该相机还具有快速数据传输、低功耗、易于集成以及高度可扩展性等特点。Baumer工业相机中彩色相机具有色彩还原度真实的特性,适用于颜色分析的工业应用。技术背景Baumer工业彩色相机由于传感
- 『论文阅读|利用深度学习在热图像中实现无人机目标检测』
Dymc
深度学习目标检测论文论文阅读深度学习无人机
利用深度学习在热图像中实现无人机目标检测摘要1引言1.1小物体检测1.2物体检测中的模型组合1.3热图像处理2提出的模型2.1预测头数量2.2骨干网络优化2.3Transformerencoder模块2.4使用滑动窗口和注意力进行卷积2.5训练和运行过程3结果3.1数据集3.2评估指标和平台3.3评估结果4结论论文题目:ObjectDetectioninThermalImagesUsingDeep
- 『论文阅读|研究用于视障人士户外障碍物检测的 YOLO 模型』
Dymc
论文深度学习目标检测论文阅读YOLO
研究用于视障人士户外障碍物检测的YOLO模型摘要1引言2相关工作2.1障碍物检测的相关工作2.2物体检测和其他基于CNN的模型3问题的提出4方法4.1YOLO4.2YOLOv54.3YOLOv64.4YOLOv74.5YOLOv84.6YOLO-NAS5实验和结果5.1数据集和预处理5.2训练和实现细节5.3性能指标5.4性能分析5.4.1YOLOv5的结果5.4.2YOLOv6的结果5.4.3Y
- OpenCV 入门讲解
清水白石008
opencv计算机视觉opencv人工智能计算机视觉
OpenCV入门讲解OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉库,它提供了许多高效实现计算机视觉算法的函数,从基本的滤波到高级的物体检测都有涵盖。OpenCV使用C/C++开发,同时也提供了Python、Java、MATLAB等其他语言的接口。它是跨平台的,可以在Windows、Linux、MacOS、Android、iOS等操作系统上运行
- 如何探索和可视化用于图像中物体检测的 ML 数据
虚无火星车
python深度学习人工智能
近年来,人们越来越认识到深入理解机器学习数据(ML-data)的必要性。不过,鉴于检测大型数据集往往需要耗费大量人力物力,它在计算机视觉(computervision)领域的广泛应用,尚有待进一步开发。通常,在物体检测(ObjectDetection,属于计算机视觉的一个子集)中,通过定义边界框,来定位图像中的物体,不仅可以识别物体,还能够了解物体的上下文、大小、以及与场景中其他元素的关系。同时,
- 2.1.1 摄像头
构图笔记
自动驾驶笔记图像处理自动驾驶
摄像头更多内容,请关注:github:https://github.com/gotonote/Autopilot-Notes.git摄像头是目前自动驾驶车中应用和研究最广泛的传感器,其采集图像的过程最接近人类视觉系统。基于图像的物体检测和识别技术已经相当成熟,随着近几年深度学习的发展,基于深度学习的视觉感知算法已大量应用于实际生活和生产中,在某些任务上甚至已经超越人类水平。在自动驾驶车上,一般会安
- pytorch,cnn,rnn和yolo关系
小小娱乐
pytorchcnnrnn
卷积神经网络(ConvolutionalNeuralNetworks,CNN)和YOLO(YouOnly卷积神经网络(ConvolutionalNeuralNetworks,CNN)和YOLO(YouOnlyLookOnce)都是深度学习中的重要技术,它们在处理图像数据方面有着广泛的应用。CNN是一种以卷积为核心的神经网络,被广泛用于图像分类、物体检测等任务。YOLO则是一种基于CNN的目标检测算
- K210的入手试玩程序介绍
我先去打把游戏先
K210硬件stm32c语言开发语言K210
目录前言一、人脸检测二、物体检测三、RGB控制四、录音播放前言入手试玩程序下载好后,界面长这个样K210如何下载程序一、人脸检测1、点击进入人脸检测2、将其对准人脸,可以识别到人脸3、把右上角的按键向左拨动,可以返回主界面二、物体检测1、点击进入物体检测2、可以识别到物体3、同样的,右上角的按键向左波动退回到主界面三、RGB控制1、点击进入RGB控制2、点击对应的颜色,RGB就会亮对应的颜色3、L
- TBC(Tied Block Convolution):具有共享较薄滤波器的更简洁、更出色的CNN
静静AI学堂
高质量AI论文翻译cnn人工智能神经网络
文章目录摘要引言相关工作TiedBlockConvolution网络设计TBC公式化在瓶颈模块中的TBC/TGCTBC和TFC在注意力模块中的应用实验结果ImageNet分类物体检测和实例分割轻量级注意力消融研究总结补充资料物体检测和实例分割的详细结果额外的Grad-CAM可视化结果
- 科普:坐标系中几何变换及常见公式
9命怪猫
几何学计算机视觉几何学
几何变换”通常指的是对图像进行平移、旋转、缩放、翻转等操作,以改变图像的位置、大小和方向。这些几何变换常用于图像处理、计算机视觉和深度学习领域,用于数据增强、图像预处理、物体检测等任务。具体来说,几何变换包括以下几种主要操作:平移:将图像沿着水平和垂直方向移动一定的距离。旋转:围绕图像中心点或指定点进行旋转,改变图像的方向。缩放:按照指定的比例增大或缩小图像的尺寸。翻转:沿水平或垂直方向对图像进行
- 2.1.1 摄像头
人工智能
摄像头更多内容,请关注:github:https://github.com/gotonote/Autopilot-Notes.git摄像头是目前自动驾驶车中应用和研究最广泛的传感器,其采集图像的过程最接近人类视觉系统。基于图像的物体检测和识别技术已经相当成熟,随着近几年深度学习的发展,基于深度学习的视觉感知算法已大量应用于实际生活和生产中,在某些任务上甚至已经超越人类水平。在自动驾驶车上,一般会安
- Transformer实战-系列教程13:DETR 算法解读
机器学习杨卓越
Transformer实战transformer深度学习DETR物体检测
Transformer实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传点我下载源码1、物体检测说到目标检测你能想到什么faster-rcnn系列,开山之作,各种proposal方法YOLO肯定也少不了,都是基于anchor这路子玩的NMS那也一定得用上,输出结果肯定要过滤一下的如果一个目标检测算法,上面这三点都木有,你说神不神
- YOLOv8相关知识
Array902
深度学习YOLO深度学习机器学习人工智能计算机视觉
YOLOv8可以干点啥图像分类;物体检测;图像分割;姿势识别;计算机视觉经典任务经典框架经典数据集注意:训练的时候用训练集,并且每训练一会使用验证集来验证一下训练到什么程度了,需不需要调参数或者停止,在训练的时候同时使用训练集和验证集;训练完后使用测试集测试。YOLO是什么YOLO发展历程YOLOv8平台安装官方文档:https://docs.ultralytics.com/zh图像分类如何训练自
- OpenShift 4 - 在 OpenShift 上运行物体检测 AI/ML 应用
dawnsky.liu
openshift人工智能AIjupyter
《OpenShift/RHEL/DevSecOps汇总目录》说明:本文已经在OpenShift4.14+RHODS2.5.0的环境中验证说明:请先根据《OpenShift4-部署OpenShiftAI环境,运行AI/ML应用(视频)》一文完成OpenShiftAI环境的安装。注意:如无特殊说明,和OpenShiftAI相关的Blog均无需GPU。文章目录运行和部署后端模型运行测试后端模型将后端模型
- 举例说明计算机视觉(CV)技术的优势和挑战
做一个AC梦
计算机视觉
计算机视觉(CV)技术的优势:高速和准确性:计算机视觉技术可以处理大量的图像或视频数据,并以非常高的速度和准确性进行分析和识别。这使得它在许多领域中具有广泛的应用,如人脸识别、物体检测和图像分类等。自动化和效率:CV技术可以实现图像和视频的自动分析和处理,减少了人力资源的需求,并提高了工作效率。它可以帮助企业降低成本,并提高生产力。大规模应用:CV技术可以在各种场景中广泛应用,包括工业、医疗、安全
- 物体检测类型实验,华为云ModelArts数据管理功能新体验
叶一一yyy
华为云人工智能大数据
前言在零售行业的线下店铺中,最大的工作量之一便是检查货架的货品情况,及时理货补货。对于某些供需较大的货品,及时补充空缺,对提升消费者购物满意度有着重要的提升作用。然而,每个区域的货物成百上千,加上一些外界因素,比如店铺灯光、视觉盲区,这些因素叠加在一起,可能会影响店员对货物数量的感知。最近在研究AI和视觉识别,追踪货架上的货物情况。借助工具,实现店员对货架商品动态的了如指掌的场景,是我这次研究的主
- OpenCV学习记录——轮廓检测
KAIs32
树莓派——OpenCVopencv学习人工智能计算机视觉嵌入式硬件
文章目录前言一、寻找、绘制轮廓二、具体应用代码前言寻找目标图像的轮廓并绘制出该轮廓是我们进行图像识别时常用的手段,轮廓是图像中连续的边界线,可以用于物体检测、形状分析等应用。为了获取更高的准确性,会先进行二值化处理,在得到二进制图像后,寻找轮廓就是从黑色背景中找到白色物体,因此我们要找的对象应是白色,背景应该是黑色。一、寻找、绘制轮廓(一)寻找图像轮廓寻找图像轮廓函数如下:contours,hie
- YOLO系列详解(YOLO1-YOLO5)【实时物体检测算法】
super_journey
YOLO算法深度学习
YOLO是什么?YOLO,全称"YouOnlyLookOnce",是一种流行的实时物体检测算法。这种算法由JosephRedmon等人在2016年的论文"YouOnlyLookOnce:Unified,Real-TimeObjectDetection"中提出。与传统的物体检测方法(例如R-CNN系列)不同,YOLO将物体检测视为一个回归问题,直接从图像中预测物体的边界框和类别。这种方法的主要优点是
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR