转载自https://blog.csdn.net/weixin_39940512/article/details/105343418
@(Aaron) [图像处理, 图像插值算法]
在图像处理中,平移变换、旋转变换以及放缩变换是一些基础且常用的操作。这些几何变换并不改变图象的象素值,只是在图象平面上进行象素的重新排列。在一幅输入图象 [ u , v ] [ u , v ] [ u , v ] [u,v][u,v] [u,v] [u,v][u,v][u,v]f(x,y)=[f(1,0)−f(0,0)]x+[f(0,1)−f(0,0)]y+[f(1,1)+f(0,0)−f(0,1)−f(1,0)]xy+f(0,0)
向前映射法
可以将几何运算想象成一次一个象素地转移到输出图象中。如果一个输入象素被映射到四个输出象素之间的位置,则其灰度值就按插值算法在4个输出象素之间进行分配。称为向前映射法,或象素移交影射。
注:从原图象坐标计算出目标图象坐标镜像、平移变换使用这种计算方法
向后映射法
向后映射法(或象素填充算法)是输出象素一次一个地映射回到输入象素中,以便确定其灰度级。如果一个输出象素被映射到4个输入象素之间,则其灰度值插值决定,向后空间变换是向前变换的逆。
注:从结果图象的坐标计算原图象的坐标
函数原型:
void cv::resize(InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation=INTER_LINEAR )
src:输入图像
dst:输出图像
dsize:输出图像尺寸
fx、fy:x,y方向上的缩放因子
INTER_LINEAR:插值方法,总共五种
1. INTER_NEAREST - 最近邻插值法
2. INTER_LINEAR - 双线性插值法(默认)
3. INTER_AREA - 基于局部像素的重采样(resampling using pixel area relation)。对于图像抽取(image decimation)来说,这可能是一个更好的方法。但如果是放大图像时,它和最近邻法的效果类似。
4. INTER_CUBIC - 基于4x4像素邻域的3次插值法
5. INTER_LANCZOS4 - 基于8x8像素邻域的Lanczos插值
代码实践:
#include
#include
using namespace cv;
using namespace std;
int main(int argc, char* argv[])
{
Mat img = imread(“D:/image/yuner.jpg”);
if (img.empty())
{
cout << “无法读取图像” << endl;
return 0;
}
int height = img.rows;
int width = img.cols;
// 缩小图像,比例为(0.2, 0.2)
Size dsize = Size(round(0.2 * width), round(0.2 * height));
Mat shrink;
//使用双线性插值
resize(img, shrink, dsize, 0, 0, INTER_LINEAR);
// 在缩小图像的基础上,放大图像,比例为(1.5, 1.5)
float fx = 1.5;
float fy = 1.5;
Mat enlarge1, enlarge2;
resize(shrink, enlarge1, Size(), fx, fy, INTER_NEAREST);
resize(shrink, enlarge2, Size(), fx, fy, INTER_LINEAR);
// 显示
imshow("src", img);
imshow("shrink", shrink);
imshow("INTER_NEAREST", enlarge1);
imshow("INTER_LINEAR", enlarge2);
waitKey(0);
return 0;
}
原图
0.2倍缩小,双线性插值
1.5倍放大,最近邻插值
1.5倍放大,双线性插值
函数原型:
cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]])
参数:
参数 | 描述 |
---|---|
src | 【必需】原图像 |
dsize | 【必需】输出图像所需大小 |
fx | 【可选】沿水平轴的比例因子 |
fy | 【可选】沿垂直轴的比例因子 |
interpolation | 【可选】插值方式 |
插值方式:
cv.INTER_NEAREST | 最近邻插值 |
cv.INTER_LINEAR | 双线性插值 |
cv.INTER_CUBIC | 基于4x4像素邻域的3次插值法 |
cv.INTER_AREA | 基于局部像素的重采样 |
通常,缩小使用cv.INTER_AREA,放缩使用cv.INTER_CUBIC(较慢)和cv.INTER_LINEAR(较快效果也不错)。默认情况下,所有的放缩都使用cv.INTER_LINEAR。
代码实践:
import cv2
if name == “main”:
img = cv2.imread(‘D:/image/yuner.jpg’, cv2.IMREAD_UNCHANGED)
print('Original Dimensions : ',img.shape)
scale_percent = 30 # percent of original size
width = int(img.shape[1] * scale_percent / 100)
height = int(img.shape[0] * scale_percent / 100)
dim = (width, height)
# resize image
resized = cv2.resize(img, dim, interpolation = cv2.INTER_LINEAR)
fx = 1.5
fy = 1.5
resized1 = cv2.resize(resized, dsize=None, fx=fx, fy=fy, interpolation = cv2.INTER_NEAREST)
resized2 = cv2.resize(resized, dsize=None, fx=fx, fy=fy, interpolation = cv2.INTER_LINEAR)
print('Resized Dimensions : ',resized.shape)
cv2.imshow("Resized image", resized)
cv2.imshow("INTER_NEAREST image", resized1)
cv2.imshow("INTER_LINEAR image", resized2)
cv2.waitKey(0)
cv2.destroyAllWindows()
0.3倍缩小,双线性插值
1.5倍放大,最近邻插值
1.5倍放大,双线性插值
插值算法是很多几何变换的基础和前置条件,对插值算法细节的掌握有助于对其他算法的理解,为自己的学习打下坚实的基础。
Task01 OpenCV框架与图像插值算法 END.
— By: Aaron
博客:https://sandy1230.github.io/
博客:https://blog.csdn.net/weixin_39940512
关于Datawhale:
Datawhale是一个专注于数据科学与AI领域的开源组织,汇集了众多领域院校和知名企业的优秀学习者,聚合了一群有开源精神和探索精神的团队成员。Datawhale以“for the learner,和学习者一起成长”为愿景,鼓励真实地展现自我、开放包容、互信互助、敢于试错和勇于担当。同时Datawhale 用开源的理念去探索开源内容、开源学习和开源方案,赋能人才培养,助力人才成长,建立起人与人,人与知识,人与企业和人与未来的联结。