§5.偏自相关系数PACF
在 A R ( 1 ) AR(1) AR(1)模型中,即使 y t − 2 y_{t-2} yt−2没有直接出现在模型中,但是 y t y_t yt和 y t − 2 y_{t-2} yt−2之间也相关,偏相关系数是在排除了其他变量的影响之后两个变量之间的相关系数。
平稳的 A R ( 1 ) AR(1) AR(1)模型:
ρ 0 = 1 ρ s = a 1 s \rho_0=1\\ \rho_s=a_1^s ρ0=1ρs=a1s
在 A R ( 1 ) AR(1) AR(1)过程中,即使 y t − 2 y_{t-2} yt−2没有直接出现在模型中,但 y t y_t yt和 y t − 2 y_{t-2} yt−2之间也相关。 y t y_t yt和 y t − 2 y_{t-2} yt−2之间的自相关系数( ρ 2 \rho_2 ρ2) 等于 y t y_t yt和 y t − 1 y_{t-1} yt−1之间的自相关系数( ρ 1 \rho_1 ρ1) 乘以 y t − 1 y_{t-1} yt−1和 y t − 2 y_{t-2} yt−2之间的相关系数(仍为 ρ 1 \rho_1 ρ1), 所以 ρ 2 = ρ 1 2 \rho_2=\rho_1^2 ρ2=ρ12。
y t y_t yt和 y t − s y_{t-s} yt−s的偏自相关系数,排除了插入值 y t − 1 y_{t-1} yt−1到 y t − s + 1 y_{t-s+1} yt−s+1间的影响。
在 A R ( 1 ) AR(1) AR(1)过程中 y t y_t yt和 y t − 2 y_{t-2} yt−2之间的偏自相关系数为0。
The steps to construct the partial autocorrelation function is as follows:
(序列的每一个值减去序列的均值,得到一个新的序列:)
①Demean and construct { y t ∗ } \{y^∗_t \} {yt∗} sequence with y t ∗ = y t − μ y^∗_t=y_t-\mu yt∗=yt−μ
②Form the first order autocorrelation y t ∗ = ϕ 11 y t − 1 ∗ + e t y^∗_t=\phi_{11}y^∗_{t-1}+e_t yt∗=ϕ11yt−1∗+et,We can see that ϕ 11 \phi_{11} ϕ11 is both the autocorrelation and partial autocorrelation.(由于没有插入值,所以 ϕ 11 \phi_{11} ϕ11既是自相关系数又是偏自相关系数)
③Control for (netting out) the effect of y t − 1 y_{t-1} yt−1 on the correlation between y t y_t yt and y t − 2 y_{t-2} yt−2 by constructing the second order autocorrelation y t ∗ = ϕ 21 y t − 1 ∗ + ϕ 22 y t − 2 ∗ + e t y^∗_t=\phi_{21}y^∗_{t-1}+\phi_{22}y^∗_{t-2}+e_t yt∗=ϕ21yt−1∗+ϕ22yt−2∗+et, ϕ 22 \phi_{22} ϕ22 the the partial autocorrelation of y t y_t yt and y t − 2 y_{t-2} yt−2
④Repeating the procedure for all additional lags s s s yield the partial autocorrelation function (PACF)
我们可以不同构造阶数的自回归模型,得到对应的偏自相关系数。
以下将归纳出偏自相关函数(PACF)的一般表达式(即通过自相关系数求出):
y t ∗ = ϕ 11 y t − 1 ∗ + e t ⇒ y t − μ = ϕ 11 ( y t − 1 − μ ) + e t y^∗_t=\phi_{11}y^∗_{t-1}+e_t\Rightarrow y_t-\mu=\phi_{11}(y_{t-1}-\mu)+e_t yt∗=ϕ11yt−1∗+et⇒yt−μ=ϕ11(yt−1−μ)+et
⇒ E ( y t − μ ) ( y t − μ ) = ϕ 11 E ( y t − 1 − μ ) ( y t − μ ) + E [ ( y t − μ ) e t ] \Rightarrow E(y_t-\mu)(y_t-\mu)=\phi_{11}E(y_{t-1}-\mu)(y_t-\mu)+E[(y_t-\mu)e_t] ⇒E(yt−μ)(yt−μ)=ϕ11E(yt−1−μ)(yt−μ)+E[(yt−μ)et]
⇒ γ 0 = ϕ 11 γ 1 + σ 2 \Rightarrow \gamma_0=\phi_{11}\gamma_1+\sigma^2 ⇒γ0=ϕ11γ1+σ2
y t ∗ = ϕ 11 y t − 1 ∗ + e t ⇒ y t − μ = ϕ 11 ( y t − 1 − μ ) + e t y^∗_t=\phi_{11}y^∗_{t-1}+e_t\Rightarrow y_t-\mu=\phi_{11}(y_{t-1}-\mu)+e_t yt∗=ϕ11yt−1∗+et⇒yt−μ=ϕ11(yt−1−μ)+et
⇒ E ( y t − μ ) ( y t − 1 − μ ) = ϕ 11 E ( y t − 1 − μ ) ( y t − 1 − μ ) + E [ ( y t − 1 − μ ) e t ] \Rightarrow E(y_t-\mu)(y_{t-1}-\mu)=\phi_{11}E(y_{t-1}-\mu)(y_{t-1}-\mu)+E[(y_{t-1}-\mu)e_t] ⇒E(yt−μ)(yt−1−μ)=ϕ11E(yt−1−μ)(yt−1−μ)+E[(yt−1−μ)et]
⇒ γ 1 = ϕ 11 γ 0 \Rightarrow \gamma_1=\phi_{11}\gamma_0 ⇒γ1=ϕ11γ0
⇒ ρ 1 = ϕ 11 \Rightarrow \rho_1=\phi_{11} ⇒ρ1=ϕ11
y t ∗ = ϕ 21 y t − 1 ∗ + ϕ 22 y t − 2 ∗ + e t y^∗_t=\phi_{21}y^∗_{t-1}+\phi_{22}y^∗_{t-2}+e_t yt∗=ϕ21yt−1∗+ϕ22yt−2∗+et
⇒ y t − μ = ϕ 21 ( y t − 1 − μ ) + ϕ 22 ( y t − 2 − μ ) + e t \Rightarrow y_t-\mu=\phi_{21}(y_{t-1}-\mu)+\phi_{22}(y_{t-2}-\mu)+e_t ⇒yt−μ=ϕ21(yt−1−μ)+ϕ22(yt−2−μ)+et
⇒ E ( y t − μ ) ( y t − 1 − μ ) = ϕ 21 E ( y t − 1 − μ ) ( y t − 1 − μ ) + ϕ 22 E ( y t − 2 − μ ) ( y t − 1 − μ ) + E [ ( y t − 1 − μ ) e t ] \Rightarrow E(y_t-\mu)(y_{t-1}-\mu)=\phi_{21}E(y_{t-1}-\mu)(y_{t-1}-\mu)+\phi_{22}E(y_{t-2}-\mu)(y_{t-1}-\mu)+E[(y_{t-1}-\mu)e_t] ⇒E(yt−μ)(yt−1−μ)=ϕ21E(yt−1−μ)(yt−1−μ)+ϕ22E(yt−2−μ)(yt−1−μ)+E[(yt−1−μ)et]
⇒ γ 1 = ϕ 21 γ 0 + ϕ 22 γ 1 \Rightarrow \gamma_1=\phi_{21}\gamma_0+\phi_{22}\gamma_1 ⇒γ1=ϕ21γ0+ϕ22γ1
y t ∗ = ϕ 21 y t − 1 ∗ + ϕ 22 y t − 2 ∗ + e t y^∗_t=\phi_{21}y^∗_{t-1}+\phi_{22}y^∗_{t-2}+e_t yt∗=ϕ21yt−1∗+ϕ22yt−2∗+et
⇒ y t − μ = ϕ 21 ( y t − 1 − μ ) + ϕ 22 ( y t − 2 − μ ) + e t \Rightarrow y_t-\mu=\phi_{21}(y_{t-1}-\mu)+\phi_{22}(y_{t-2}-\mu)+e_t ⇒yt−μ=ϕ21(yt−1−μ)+ϕ22(yt−2−μ)+et
⇒ E ( y t − μ ) ( y t − 2 − μ ) = ϕ 21 E ( y t − 1 − μ ) ( y t − 2 − μ ) + ϕ 22 E ( y t − 2 − μ ) ( y t − 2 − μ ) + E [ ( y t − 2 − μ ) e t ] \Rightarrow E(y_t-\mu)(y_{t-2}-\mu)=\phi_{21}E(y_{t-1}-\mu)(y_{t-2}-\mu)+\phi_{22}E(y_{t-2}-\mu)(y_{t-2}-\mu)+E[(y_{t-2}-\mu)e_t] ⇒E(yt−μ)(yt−2−μ)=ϕ21E(yt−1−μ)(yt−2−μ)+ϕ22E(yt−2−μ)(yt−2−μ)+E[(yt−2−μ)et]
⇒ γ 2 = ϕ 21 γ 1 + ϕ 22 γ 0 \Rightarrow \gamma_2=\phi_{21}\gamma_1+\phi_{22}\gamma_0 ⇒γ2=ϕ21γ1+ϕ22γ0
Thus,we have:
{ γ 1 = ϕ 21 γ 0 + ϕ 22 γ 1 γ 2 = ϕ 21 γ 1 + ϕ 22 γ 0 ⇒ { ρ 1 = ϕ 21 + ϕ 22 ρ 1 ρ 2 = ϕ 21 ρ 1 + ϕ 22 \begin{cases} \gamma_1=\phi_{21}\gamma_0+\phi_{22}\gamma_1\\ \gamma_2=\phi_{21}\gamma_1+\phi_{22}\gamma_0 \end{cases} \Rightarrow \begin{cases} \rho_1=\phi_{21}+\phi_{22}\rho_1\\ \rho_2=\phi_{21}\rho_1+\phi_{22} \end{cases} {γ1=ϕ21γ0+ϕ22γ1γ2=ϕ21γ1+ϕ22γ0⇒{ρ1=ϕ21+ϕ22ρ1ρ2=ϕ21ρ1+ϕ22
⇒ \Rightarrow ⇒
ϕ 22 = ρ 2 − ρ 1 2 1 − ρ 1 2 \phi_{22}=\frac{\rho_2-\rho_1^2}{1-\rho_1^2} ϕ22=1−ρ12ρ2−ρ12
通过归纳得:
ϕ s s = ρ s − ∑ j = 1 s − 1 ϕ s − 1 , j ρ s − j 1 − ∑ j = 1 s − 1 ϕ s − 1 , j ρ s − j s = 3 , 4 , 5 , . . . \phi_{ss}=\frac{\rho_s-\sum_{j=1}^{s-1}\phi_{s-1,j}\,\rho_{s-j}}{1-\sum_{j=1}^{s-1}\phi_{s-1,j}\,\rho_{s-j}}\qquad s=3,4,5,... ϕss=1−∑j=1s−1ϕs−1,jρs−jρs−∑j=1s−1ϕs−1,jρs−js=3,4,5,...
其中, ϕ s , j = ϕ s − 1 , j − ϕ s , s ϕ s − 1 , s − j j = 1 , 2 , . . . , s − 1 \phi_{s,j}=\phi_{s-1,j}-\phi_{s,s}\,\phi_{s-1,s-j}\quad j=1,2,...,s-1 ϕs,j=ϕs−1,j−ϕs,sϕs−1,s−jj=1,2,...,s−1
Remark: We know that for a M A ( q ) MA(q) MA(q) model, the A C F ACF ACF will be 0 for all s > q s > q s>q and for A R ( p ) AR(p) AR(p) model, the P A C F PACF PACF will be 0 for all s > p s > p s>p( p p p阶之后就没有 ϕ s s \phi_{ss} ϕss了). This is a useful feature to identification of M A MA MA and A R AR AR model respectively.