- Python OpenCV图像处理:从基础到高级的全方位指南
极客代码
玩转Python开发语言pythonopencv图像处理计算机视觉
目录第一部分:PythonOpenCV图像处理基础1.1OpenCV简介1.2PythonOpenCV安装1.3实战案例:图像显示与保存1.4注意事项第二部分:PythonOpenCV图像处理高级技巧2.1图像变换2.2图像增强2.3图像复原第三部分:PythonOpenCV图像处理实战项目3.1图像滤波3.2图像分割3.3图像特征提取第四部分:PythonOpenCV图像处理注意事项与优化策略4
- MATLAB车牌定位和识别系统
清风明月来几时
图像算法处理matlab开发语言
有很多方法可以实现MATLAB车牌的定位和识别系统。以下是一种可能的实现步骤:车牌定位:使用图像处理技术(如边缘检测、区域生长或颜色分割)来检测图像中的车牌区域。使用形态学操作来排除不符合车牌形状的区域。对车牌区域进行裁剪或调整大小,以便后续的识别。车牌识别:将车牌图像转换为灰度图像。使用图像处理技术(如二值化、滤波或增强)来减少噪音并突出字符。使用字符分割算法将车牌中的字符分开。使用特征提取方法
- 【机器学习】Python与深度学习的完美结合——深度学习在医学影像诊断中的惊人表现
空白诗
机器学习深度学习人工智能python
个人主页:空白诗文章目录一、引言二、深度学习在医学影像诊断中的突破1.技术原理2.实际应用3.性能表现三、深度学习在医学影像诊断中的惊人表现1.提高疾病诊断准确率2.辅助制定治疗方案四、深度学习对医疗行业的影响和推动作用一、引言随着人工智能技术的不断发展,深度学习在医学影像诊断领域的应用日益广泛,其强大的特征提取能力和高效的学习机制为医学影像诊断带来了革命性的突破。本文将深入探讨深度学习在医学影像
- 毕设项目 基于特征熵值分析的网站分类系统实现(源码+论文)
iuidfds
毕业设计毕设
文章目录0项目说明1研究目的2研究方法3研究结论4各模块介绍4.1爬虫模块功能与技术4.2网页处理模块功能与技术4.3特征提取与文本特征表示模块功能与技术4.4分类器模块功能与技术5项目源码6论文目录7最后0项目说明基于特征熵值分析的网站分类系统实现提示:适合用于课程设计或毕业设计,工作量达标,源码开放1研究目的本设计对KNN算法的缺陷产生原因进行详细地分析,并针对缺陷对算法进行了引入属性熵值等一
- 在COD领域,图像中提取的高频和低频信息分别代表什么?
Wils0nEdwards
计算机视觉人工智能
在CamouflagedObjectDetection(COD)领域中,图像中的高频和低频信息在特征提取和物体检测中有着不同的含义和作用。COD的本质是解决目标在视觉上与背景高度相似的问题,因此合理利用图像的频率信息(高频和低频)有助于提高检测效果。高频信息高频信息指的是图像中变化迅速的部分,通常包括细节、边缘和纹理等特征。在COD中:高频信息代表图像中的边缘、细节和纹理特征。这些特征对于分割伪装
- SSD目标检测系统
月见樽
首发于个人博客系统结构system.pngSSD识别系统也是一种单步物体识别系统,即将提取物体位置和判断物体类别融合在一起进行,其最主要的特点是识别器用于判断物体的特征不仅仅来自于神经网络的输出,还来自于神经网络的中间结果。该系统分为以下几个部分:神经网络部分:用作特征提取器,提取图像特征识别器:根据神经网络提取的特征,生成包含物品位置和类别信息的候选框(使用卷积实现)后处理:对识别器提取出的候选
- 汽车智能驾驶算法汇总
芊言芊语
汽车算法
汽车智能驾驶算法是自动驾驶技术的核心,它们集成了多个学科的知识,包括计算机视觉、机器学习、控制理论、路径规划等。以下是对汽车智能驾驶算法的一个详细汇总,内容分为几个关键部分进行阐述。一、计算机视觉算法计算机视觉是智能驾驶算法中用于识别和理解环境的关键技术。它主要包括图像处理、特征提取和对象识别等步骤。图像处理:通过摄像头等设备获取车辆前方的图像,然后进行预处理,如灰度化、二值化、滤波等操作,以提高
- 如何用RoBERTa高效提取事件文本结构特征:多层次上下文建模与特征融合
大多_C
人工智能
基于RoBERTa-BASE的特征提取器,提取事件文本数据的结构特征(如段落和篇章结构)涉及多个步骤。RoBERTa作为一种预训练语言模型,可以很好地捕捉输入文本的上下文和依赖关系。具体步骤如下:1.文本预处理在提取事件文本的结构特征之前,需要对文本进行适当的预处理。这一步包括:分句和分段处理:将事件文本拆分为不同的句子或段落,并对每个句子/段落进行标记。每个段落可以视为一个独立的输入序列。Tok
- Pointnet++改进即插即用系列:全网首发DilatedReparamBlock |即插即用,提升特征提取模块性能
AICurator
Pointnet++改进专栏python深度学习pytorch
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入DilatedReparamBlock,提升性能。3.专栏持续更新,紧随最新的研究内容。目录1.理论介绍2.修改步骤2.1步骤一2.2步骤二2.3步骤三1.理论介绍近年来,大核卷积神经网络(ConvNets)得到了广泛的研究关注,但有两个尚未解决的关键问
- YOLOv9独家原创改进|使用可改变核卷积AKConv改进RepNCSPELAN4
今天炼丹了吗
YOLOv9涨点改进专栏人工智能机器学习python深度学习YOLO目标检测
专栏介绍:YOLOv9改进系列|包含深度学习最新创新,主力高效涨点!!!一、改进点介绍AKConv是一种具有任意数量的参数和任意采样形状的可变卷积核,对不规则特征有更好的提取效果。RepNCSPELAN4是YOLOv9中的特征提取模块,类似YOLOv5和v8中的C2f与C3模块。二、RepNCSPELAN4-AKConv模块详解2.1模块简介RepNCSPELAN4-AKConv的主要思想:使用A
- 图像预处理之图像去重
江小皮不皮
计算机视觉opencv人工智能图像去重直方图
图像预处理之图像去重图像去重介绍方法基于直方图进行图像比对基于哈希法基于ORG进行图像特征提取基于机器学习批量去重图像去重介绍图像去重通常指的是完全相同的图像,即内容完全相同,颜色、尺寸、方向等都相同。但是在实际应用中,也有相似图像去重的需求,即内容大致相同,颜色、尺寸、方向等可能有所不同。因此,图像去重指的可以是完全一样的图像,也可以是相似的图像。图像去重的方法有以下几种:方法哈希法:通过计算图
- 深度学习特征提取魔改版太强了!发文香饽饽!
深度之眼
深度学习干货人工智能干货人工智能深度学习机器学习论文特征提取
要说CV领域经久不衰的研究热点,特征提取可以占一席,毕竟SLAM、三维重建等重要应用的底层都离不开它。再加上近几年深度学习兴起,用深度学习做特征提取逐渐成了主流,比传统算法无论是性能、准确性还是效率都更胜一筹。目前比较常见的深度学习特征提取方法有基于transformer、基于CNN、基于LSTM以及基于GAN,都发展的比较成熟。但为了追求更快速、准确、鲁棒的特征点提取,研究者们开始致力于改进深度
- 人脸识别技术框架
weixin_30314813
人工智能
1、人脸检测(确定人脸的位置)。2、人脸关键点(确定眼睛,嘴角等特征位置)。3、人脸几何校正(把人脸通过缩放、旋转、拉伸等图像变化到一个比较标准的大小位置)。4、人脸光学校正(滤波,去除一些对光照敏感的面部特征)。5、人脸特征提取(包括LBP,HOG,Gabor等)。6、人脸识别转载于:https://www.cnblogs.com/lanye/p/3620621.html
- 目标检测-YOLOv4
wydxry
深度学习目标检测YOLO目标跟踪
YOLOv4介绍YOLOv4是YOLO系列的第四个版本,继承了YOLOv3的高效性,并通过大量优化和改进,在目标检测任务中实现了更高的精度和速度。相比YOLOv3,YOLOv4在框架设计、特征提取、训练策略等方面进行了全面升级。它在保持实时检测的同时,显著提升了检测性能,尤其在复杂场景中的表现尤为出色。相比YOLOv3的改进与优势改进的Backbone(CSPDarknet-53)YOLOv4使用
- Python中的深度学习神经网络
2301_78297473
深度学习python神经网络
文章目录1.引言-简介-深度学习与Python的关系2.神经网络的原理-神经网络基础知识-Python中的神经网络库与工具-构建与训练神经网络模型的步骤深度学习训练过程3.卷积神经网络的原理-卷积层与池化层-特征提取与全连接层-Python中的CNN库与工具4.Python中深度学习的挑战和未来发展方向-计算资源与速度-迁移学习与模型压缩-融合多种深度学习算法1.引言-简介深度学习是机器学习的一个
- c++ +Opencv实现车牌自动识别
听忆.
人工智能计算机视觉
c+++Opencv实现车牌自动识别1.图像预处理2.车牌定位3.字符分割4.字符识别完整流程概述:边走、边悟迟早会好要用C++和OpenCV实现车牌自动识别,主要流程分为几个步骤:图像预处理:提高车牌区域的可见度,方便后续的车牌定位与字符识别。车牌定位:通过图像处理和特征提取,定位车牌在图像中的位置。字符分割:将车牌区域中的字符逐个分割出来。字符识别:利用机器学习算法或者OCR(光学字符识别)技
- 『点云处理任务 』用PCL库 还是 深度学习模型?
爱钓鱼的歪猴
点云深度学习人工智能pcl库
深度学习和PCL库都可以用来做点云处理任务,但是二者侧重点有所不同。1、PCL库(点云库)是一个专门用于点云处理和三维几何分析的开源类库,常用于以下任务:1、点云滤波:用于去除噪音、下采样和平滑等操作,入统计滤波、体素滤波和高斯滤波等。2、特征提取和描述:用于捕获地点云数据的表面特征,入法线估计、曲率计算、局部特征描述子(如FPFH、SHOT)等。3、点云配准:,用于将不同视角或不同时间的点云数据
- 点云从入门到精通技术详解100篇-点云特征学习模型及其在配准中的应用
格图素书
学习
目录前言应用前景国内外研究现状点云特征提取算法研究现状点云配准算法研究现状相关理论基础2.1深度学习2.1.1深度学习概述2.1.2自编码器2.1.3稀疏编码2.1.4受限玻尔兹曼机2.2多层感知机2.2.1多层感知机概述2.2.2感知器与多层感知机2.2.3多层感知机的训练2.3点云配准方法2.3.1无点对应关系的点云配准方法2.3.2基于对应关系的点云配准方法2.4评价指标2.4.1点云配准评
- 如何在3D无序抓取中应用深度学习算法?
道亦无名
人工智能3d深度学习算法
在3D无序抓取中,深度学习算法的应用极大地提升了系统的识别精度和效率。以下是深度学习算法在3D无序抓取中的具体应用方式:一、物体识别图像预处理:首先,通过3D相机获取的点云数据或深度图像需要进行预处理,包括去噪、滤波、分割等步骤,以提高后续处理的准确性。特征提取:利用深度学习算法(如卷积神经网络CNN)对预处理后的图像进行特征提取。这些特征可以是物体的形状、纹理、边缘等,有助于区分不同的物体。分类
- YOLO缺陷检测学习笔记(2)
tt555555555555
YOLO缺陷检测学习笔记YOLO学习笔记
YOLO缺陷检测学习笔记(2)残差连接1.**YOLO的残差连接结构**2.**YOLO使用残差连接的目的**3.**YOLO中的残差块**4.**YOLOv3和YOLOv4的残差连接架构**YOLO网络架构概述1.特征提取网络2.预测头(DetectionHead)3.后处理(Post-processing)YOLOv3/v4的改进YOLOv3YOLOv4SoftmaxSoftmax的性质:So
- Fréchet Inception Distance(FID)原理
代维7
生成式模型计算机视觉
原理概述:FID的核心思想是通过比较真实图像和生成图像在Inception模型特征空间中的分布差异,来评估生成模型的性能。它假设从真实数据和生成数据中提取的特征都近似服从高斯分布。具体步骤:特征提取:使用预训练的Inception模型分别对真实图像和生成图像进行处理,得到各自的特征向量。计算均值和协方差:对于真实图像的特征向量集合,计算其均值向量μreal\mu_{real}μreal和协方差矩阵
- javacv从入门到精通——第三章:基本使用
ayou_llf
javacvjavaopencv语音识别音视频视频编解码
了解javacv的基本结构JavaCV的基本结构如下:JavaCV核心类:JavaCV核心类是JavaCV库的核心,它包括了JavaCV的所有功能和特性,可以用来进行计算机视觉和人工智能任务的开发和实现。JavaCV核心类的主要功能包括:视频捕获、视频编解码、图像处理、人脸检测、特征提取等。基本数据类型:JavaCV库支持多种基本数据类型,包括整数、浮点数、布尔类型等,这些基本数据类型是进行计算机
- 回归预测|基于卷积神经网络-鲸鱼优化-最小二乘支持向量机的数据回归预测Matlab程序 CNN-WOA-LSSVM
机器不会学习CL
回归预测智能优化算法回归cnn支持向量机
回归预测|基于卷积神经网络-鲸鱼优化-最小二乘支持向量机的数据回归预测Matlab程序CNN-WOA-LSSVM文章目录一、基本原理1.数据预处理2.特征提取(CNN)3.参数优化(WOA)4.模型训练(LSSVM)5.模型评估和优化6.预测总结二、实验结果三、核心代码四、代码获取五、总结回归预测|基于卷积神经网络-鲸鱼优化-最小二乘支持向量机的数据回归预测Matlab程序CNN-WOA-LSSV
- 基于CNN-BiLSTM-Adaboost风电功率预测研究(Matlab代码实现)
创新优化代码学习
cnnmatlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、研究方法1.数据准备与预处理2.CNN特征提取3.BiLSTM序列建模4.Adaboost集成学习5.模型训练与评估三、研究优势四、未来展望2运行结果3参考文献4Matlab代码、数据⛳️赠与读者做科研,涉及到一个深在的思想系
- YOLOv10改进 | 独家创新- 注意力篇 | YOLOv10引入结合EMAttention和ParNetAttention形成全新的EPA注意力机制和C2f_EPA(全网独家创新)
小李学AI
YOLOv10有效涨点专栏YOLO深度学习计算机视觉人工智能目标检测机器学习神经网络
1.EPAAttention介绍EPAAttention注意力机制综合了EMAttention和ParNetAttention的优势,能够更有效地提取图像特征。(1).综合性与多样性EPAAttention结合了两种不同的注意力机制,充分利用了EMAttention的分组归一化和特征增强能力,以及ParNetAttention的空间注意力和全局特征提取能力。通过这种多样化的组合,EPAAttent
- 人脸识别设计
melonbo
项目分享深度学习人脸识别openface
总体思路人脸识别使用的算法思路为:首先,定位一张图像中所有的人脸位置;其次,对于同一张脸,当光线改变或者朝向方位改变时,算法还能判断是同一张脸;然后找到每一张脸不同于其他脸的独特之处,比如脸的大小、眉毛的弯曲程度,并表示出来;最后,通过把表示出来的脸的特征数据与数据库中的所有的人脸特征进行匹配,确定图像中人的身份信息。模型介绍OpenFace是一个基于深度神经网络的人脸识别和面部特征提取系统,它主
- spark应用程序转换_4.Spark特征提取、转换和选择 - 简书
weixin_39956182
spark应用程序转换
在实际机器学习项目中,我们获取的数据往往是不规范、不一致、有很多缺失数据,甚至不少错误数据,这些数据有时又称为脏数据或噪音,在模型训练前,务必对这些脏数据进行处理,否则,再好的模型,也只能脏数据进,脏数据出。这章我们主要介绍对数据处理涉及的一些操作,主要包括:特征提取特征转换特征选择4.1特征提取特征提取一般指从原始数据中抽取特征。4.1.1词频-逆向文件频率(TF-IDF)词频-逆向文件频率(T
- spark mllib 特征学习笔记 (一)
路人与大师
spark-ml学习笔记
PySparkMLlib特征处理详解PySparkMLlib提供了丰富的特征处理工具,帮助我们进行特征提取、转换和选择。以下是PySparkMLlib中常用的特征处理类及其简要介绍。1.BinarizerBinarizer是将连续特征二值化的转换器。frompyspark.ml.featureimportBinarizerbinarizer=Binarizer(threshold=0.5,inpu
- 【Python机器学习】NLP概述——深度处理
zhangbin_237
Python机器学习python机器学习自然语言处理人工智能机器人
自然语言处理流水线的各个阶段可以看作是层,就像是前馈神经网络中的层一样。深度学习就是通过在传统的两层机器学习模型架构(特征提取+建模)中添加额外的处理层来创建更复杂的模型和行为。上图中,前四层对应于聊天机器人流水线中的前两个阶段(特征提取和特征分析)。例如,词性标注(POS标注)是在聊天机器人流水线的分析阶段生成特征的一种方法。POS标签由默认的SpaCY流水线自动生成,该流水线包括上图中所有的前
- 一个全自动病理处理分析工具——CLAM
qq_42894217
病理图像分析python计算机视觉深度学习分类
文章目录1.简介2.环境配置2.1环境创建2.2安装依赖2.3安装预训练编码器3.数据集准备4.数据处理4.1全自动数据预处理4.2半自动数据预处理step1:设置分割参数step2:执行预分割step3:调整分割参数step4:批量分割5.特征提取6.模型训练6.1数据集划分6.2模型训练6.3模型验证6.4热图可视化1.简介CLAM是一种基于深度学习的数据高效、弱监督的全幻灯片(WSI)级的全
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。