- 李宏毅机器学习笔记——反向传播算法
小陈phd
机器学习机器学习算法神经网络
反向传播算法反向传播(Backpropagation)是一种用于训练人工神经网络的算法,它通过计算损失函数相对于网络中每个参数的梯度来更新这些参数,从而最小化损失函数。反向传播是深度学习中最重要的算法之一,通常与梯度下降等优化算法结合使用。反向传播的基本原理反向传播的核心思想是利用链式法则(ChainRule)来高效地计算损失函数相对于每个参数的梯度。以下是反向传播的基本步骤:前向传播(Forwa
- 李宏毅机器学习笔记 2.回归
Simone Zeng
机器学习机器学习
最近在跟着Datawhale组队学习打卡,学习李宏毅的机器学习/深度学习的课程。课程视频:https://www.bilibili.com/video/BV1Ht411g7Ef开源内容:https://github.com/datawhalechina/leeml-notes本篇文章对应视频中的P3。另外,最近我也在学习邱锡鹏教授的《神经网络与深度学习》,会补充书上的一点内容。通过上一次课1.机器
- 2023春季李宏毅机器学习笔记 02 :机器学习基本概念
女王の专属领地
机器学习深度学习#李宏毅2023机器学习机器学习笔记人工智能
资料课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub:https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程:https://space.bilibili.com/253734135/channel/collectiondetail?sid=2014800一、機器學習基
- 2023春季李宏毅机器学习笔记 03 :机器如何生成文句
女王の专属领地
#李宏毅2023机器学习机器学习深度学习笔记机器学习人工智能深度学习
资料课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub:https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程:https://space.bilibili.com/253734135/channel/collectiondetail?sid=2014800一、大语言模型
- Chat GPT4来了,它和3.5区别在哪?李宏毅机器学习笔记
抱抱小杠杠
机器学习人工智能笔记
听说GPT4模型更大、参数更多,功能更强,具体它好在哪里?GPT4真的能看懂图片吗?官方回答:不太能~~下面这张图片是将两个不存在的网址输入进GPT4,问它看到了什么,结果发现GPT真的会胡言乱语,它会根据网址中出现了“man”这个单词,就说他看到了“一个拿着手枪的男人。。。巴拉巴拉”明显就是在胡编乱造!而如果网址中出现了“girl”这个单词,GPT又会说他看到了“一个穿着校服的女孩子。。。巴拉巴
- 2023春季李宏毅机器学习笔记 05 :机器如何生成图像
女王の专属领地
#李宏毅2023机器学习机器学习笔记人工智能机器学习李宏毅AI产品
资料课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub:https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程:https://space.bilibili.com/253734135/channel/collectiondetail?sid=2014800一、图像生成常
- 2023春季李宏毅机器学习笔记01 :正确认识 ChatGPT
女王の专属领地
深度学习机器学习机器学习李宏毅人工智能AI产品
资料课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub:https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程:https://space.bilibili.com/253734135/channel/collectiondetail?sid=2014800一、对Chat
- 【23-24 秋学期】NNDL 作业11 LSTM
HBU_David
lstm机器学习人工智能
习题6-4推导LSTM网络中参数的梯度,并分析其避免梯度消失的效果习题6-3P编程实现下图LSTM运行过程李宏毅机器学习笔记:RNN循环神经网络_李宏毅rnn笔记_ZEERO~的博客-CSDN博客https://blog.csdn.net/weixin_43249038/article/details/132650998L5W1作业1手把手实现循环神经网络-CSDN博客https://blog.c
- 李宏毅老师机器学习课程笔记_ML Lecture 1: ML Lecture 1: Regression - Demo
leogoforit
引言:最近开始学习“机器学习”,早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程。今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子加深学生的印象。视频链接(bilibili):李宏毅机器学习(2017)另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML-Notes)所以,接下来我的笔记只记录一些我自己的总结和听课当时的
- 李宏毅机器学习笔记.Flow-based Generative Model(补)
oldmao_2000
李宏毅机器学习笔记机器学习笔记人工智能
文章目录引子生成问题回顾:GeneratorMathBackgroundJacobianMatrixDeterminant行列式ChangeofVariableTheorem简单实例一维实例二维实例网络G的限制基于Flow的网络构架G的训练CouplingLayerCouplingLayer反函数计算CouplingLayerJacobian矩阵计算CouplingLayerStacking1×1
- 李宏毅机器学习笔记-transformer
ZEERO~
深度学习机器学习笔记transformer深度学习
transformer是什么呢?是一个seq2seq的model。具体应用如上图所示,输入和输出的序列长度不固定,由model自己决定。语音翻译指的是,直接输入一段语音信号,例如英文,输出的直接是翻译之后的中文。seq2seq如今已经是一个应用非常广泛的模型,可以应用于NLP的各种任务,如语义分析,语义分类,聊天机器人等。另外还有个值得说明的功能是做multilabelclassification
- 李宏毅机器学习笔记-半监督学习
ZEERO~
深度学习机器学习笔记学习
半监督学习,一般应用于少量带标签的数据(数量R)和大量未带标签数据的场景(数量U),一般来说,U>>R。半监督学习一般可以分为2种情况,一种是transductivelearning,这种情况下,将unlabeleddata的feature利用进来。另外一种是inductivelearning,这种情况下,在训练的整个过程中,完全不看任何unlabeleddata的信息。为什么要做semi-sup
- 李宏毅机器学习笔记第7周_局部最小值与鞍点
MoxiMoses
机器学习深度学习
文章目录一、OptimizationFailsbecause……二、TaylerSeriesApproximation三、Example总结一、OptimizationFailsbecause……1.问题:我们在做optimization的时候会发现,随着参数的不断更新,training的loss不会再下降,但是我们对loss并不满意。因此我们会发现,一开始model就train不起来,不管我们怎
- 李宏毅机器学习笔记:RNN循环神经网络
ZEERO~
深度学习机器学习机器学习笔记rnn
RNN一、RNN1、场景引入2、如何将一个单词表示成一个向量3种典型的RNN网络结构二、LSTMLSTM和普通NN、RNN区别三、LSTM的训练一、RNN1、场景引入例如情景补充的情况,根据词汇预测该词汇所属的类别。这个时候的Taipi则属于目的地。但是,在订票系统中,Taipi也可能会属于出发地。到底属于目的地,还是出发地,如果不结合上下文,则很难做出判断。因此,使用传统的深度神经网络解决不了问
- 李宏毅机器学习笔记:结构学习,HMM,CRF
ZEERO~
机器学习机器学习笔记学习
李宏毅机器学习笔记:结构学习,HMM,CRF1、隐马尔可夫模型HMM1.1Sequence2Sequence1.2HMM1.3Viterbi算法1.3HMM模型的缺点2、CRF2.1CRF模型2.2CRF模型训练1、隐马尔可夫模型HMM1.1Sequence2Sequence什么是Seq2Seq问题呢?简单来说,就是输入是一个序列,输出也是一个序列。输入和输出的序列可以相等,也可以不相等。在本文中
- 李宏毅机器学习笔记——16. Conditional Generation by RNN&Attention(RNN条件生成与注意力机制)
HSR CatcousCherishes
机器学习基础课程知识机器学习人工智能神经网络
摘要:本章内容是讲解了Generation,Attention,TipsforGeneration,一是围绕用RNN实现Generation(生成)的方法与基本原理,先应用生成句子去介绍生成的基本原理,接着举例无条件的生成图片,其不同的是:将图片上的每个像素点看成一个word,并需要考虑各像素之间的几何关系,所以我们需要借助3D-LSTM完善了Generation图片功能。但是在实际应用中,我们的
- 李宏毅机器学习笔记——生成模型
荆棘鸟》
深度学习人工智能
介绍了三种方法,pixelRNN,VAE,GAN。笔记以VAE为主。pixelRNN比较容易理解,由已知推未知。这种方法还能应用到语音生成等领域在这里有个tips值得说一下,图的每个像素一般RGB三色,问题出在当RGB三个值相差不大时最终的结果像素点的颜色趋向灰色,于是乎,为了使生成的图像更加鲜亮,就需要拉高三个值的差距。简而言之,原本用三个数表示颜色,现在只用一个。VAE是一个相对复杂的东西,事
- 李宏毅机器学习笔记——概率模型
荆棘鸟》
机器学习人工智能神经网络
很有意思的一门课,但关于如何利用P(x)生成x还存在疑惑。在神经网络中y=w*x+b,为什么是这个形式?这门课将在最后归结到这一点上。举一个实际的例子,训练集中A类71个B类69个我们假定A类的71个点遵循gaussiondistribution,上图涉及的函数:输入一个点(代表一个实例的特征vector),输出sample中该点的概率,在下文中即为P(x|A)与P(x|B)该函数有两个参数,μ与
- 李宏毅机器学习笔记
learn_for_more
机器学习人工智能深度学习
DataWhale–李宏毅老师机器学习P5-P8《误差来源》和《梯度下降法》学习笔记学习笔记本文是李宏毅老师B站–《机器学习》课程的学习笔记,在此非常感谢DataWhale提供的平台,希望大家加入到这个学习的大家庭中,共同成长。本文主要是关于误差来源及梯度下降法的介绍,是在老师的讲解视频和学习文档的基础上总结而来。一、误差来源在机器学习中,模型估计的误差可以分为两种,偏差(Bias)和方差(Var
- 【ML入门】李宏毅机器学习笔记02-回归问题(Regression)
BG大龍
【ML入门】李宏毅机器学习笔记02-回归问题(Regression)-知乎https://zhuanlan.zhihu.com/p/74684108
- 李宏毅机器学习笔记第8周_批次与动量
MoxiMoses
机器学习深度学习
文章目录一、Review:OptimizationwithBatch二、SmallBatchv.s.LargeBatch三、Momentum1.SmallGradient2.VanillaGradient3.GradientDescent+Momentum一、Review:OptimizationwithBatch在计算微分的时候,并不是把所有的data对计算出来的L做微分,而是把data分成一个
- 【ML入门】李宏毅机器学习笔记01-Learning Map
BG大龍
【ML入门】李宏毅机器学习笔记01-LearningMap-知乎https://zhuanlan.zhihu.com/p/74377397
- 李宏毅机器学习—机器学习介绍
修_远
李宏毅机器学习
李宏毅机器学习笔记github链接:https://github.com/datawhalechina/leeml-notes李宏毅机器学习笔记在线阅读链接:https://datawhalechina.github.io/leeml-notes机器学习介绍这门课,我们预期可以学到什么呢?我想多数同学的心理预期就是你可以学到一个很潮的人工智慧。我们知道,从今年开始,人工智慧这个词突然变得非常非常非
- 【李宏毅机器学习笔记】9、卷积神经网络(Convolutional Neural Network,CNN)
qqqeeevvv
机器学习深度学习机器学习深度学习
【李宏毅机器学习笔记】1、回归问题(Regression)【李宏毅机器学习笔记】2、error产生自哪里?【李宏毅机器学习笔记】3、gradientdescent【李宏毅机器学习笔记】4、Classification【李宏毅机器学习笔记】5、LogisticRegression【李宏毅机器学习笔记】6、简短介绍DeepLearning【李宏毅机器学习笔记】7、反向传播(Backpropagatio
- 李宏毅机器学习笔记第8周_自动调整学习速率
MoxiMoses
机器学习深度学习
文章目录一、Trainingstuck≠SmallGradient二、Waitaminute三、Trainingcanbedifficultevenwithoutcriticalpoints四、Differentparametersneedsdifferentlearningrate五、Rootmeansquare六、RMSProp七、Adam:RMSProp+Momentum八、Learning
- 【李宏毅机器学习笔记1】第一节 机器学习基本概念简介(上)
freezing001
深度学习深度学习机器学习
第一节机器学习基本概念简介(上)1.机器学习第一步:function机器学习MachineLearning≈LookingforFunctionML的三大任务:Regression(回归)+classification(分类)+strcturedlearning(createsomethingwithstructure)即让机器产生有结构的东西机器学习的model:带有未知parameters的f
- 李宏毅机器学习笔记-Lecture1
不废江河954
笔记深度学习学习机器学习学习人工智能
李宏毅机器学习笔记-Lecture1_续机器学习基本概念(下)PiecewiseLinearCurvesBeyondPiecewiseLinearCurvesSigmoidFunction各参数对Sigmoid的影响用Sigmoid拟合PiecewiseLinearCurvesNewModelwithMoreFeatures最终模型对各个参数的认识MLFramework构造模型构造损失函数找到最优
- 2021李宏毅机器学习笔记--7.1 backpropagation
guoxinxin0605
机器学习神经网络人工智能深度学习
2021李宏毅机器学习笔记--7.1backpropagation1摘要2步骤2.1chainrule链式法则2.2lossfunction2.2.1forwardpass2.2.2backwardpasscase1未知的两项在输出层case2未知的两项并不在输出层3小结及展望1摘要上文讲到可以用Backpropagation的方法对网络中的所有参数(w和b)进行更新,最终使totalloss达到
- 2021李宏毅机器学习笔记--16 Recursive Network
guoxinxin0605
网络神经网络
2021李宏毅机器学习笔记--16RecursiveNetwork递归网络摘要一、Application:SentimentAnalysis(应用:情绪分析)二、RecursiveNetwork三、RecursiveNetworkTensorNetwork四、Matrix-VectorRecursiveNetwork五、TreeLSTM六、MoreApplication(更多应用:句子关联)总结摘
- 2021李宏毅机器学习笔记--7 deep learning深度学习 与 fully connect feedforward network全连接前馈网络
guoxinxin0605
神经网络机器学习深度学习人工智能网络
2021李宏毅机器学习笔记--7deeplearning深度学习与fullyconnectfeedforwardnetwork全连接前馈网络摘要步骤step1NeuralnetworkFullyConnectFeedforwardNetwork全连接前馈网络step2goodnessofafunctionstep3Backpropagation小结与展望摘要近些年来。在各个领域,用到深度学习的地方
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出