【洛谷4770/UOJ395】[NOI2018]你的名字(后缀数组_线段树合并)

题目:

洛谷4770

UOJ395

分析:

一个很好的SAM应用题……

一句话题意:给定一个字符串\(S\)。每次询问给定字符串\(T\)和两个整数\(l\)\(r\),求\(T\)有多少个本质不同的非空子串不是\(S[l,r]\)的子串。

首先显然是“正难则反”,求有多少个本质不同的非空子串是\(S[l,r]\)的子串(下面的“答案”一词指的是这个值)。先考虑没有\(l\)\(r\)限制的情况。分别处理询问。对于\(S\)建出后缀自动机。枚举\(T\)的所有前缀,在\(S\)的后缀自动机上走(匹配)。每个前缀对答案的贡献就是这个前缀有多少后缀出现在\(S\)中,即当前在后缀自动机上匹配的深度。

但是直接把所有贡献都加起来是错的,因为没有保证本质不同。于是对\(T\)也建出后缀自动机,不统计每个前缀的贡献,而是统计每个结点的贡献,即统计每个结点对应的本质不同的字符串中有多少个在\(S\)中出现。记\(lim[i]\)\(T\)的前缀\(i\)有多少个后缀在\(S\)中出现,那么一个结点\(p\)的贡献就是\(max(0,min(lim[i],max[p])-max[fa[p]])\),其中\(i\)\(p\)\(Right\)集合中的任意一个点。由于以\(Right\)集合中任意一点结尾的,长度不超过\(max[p]\)的子串都是相同的,所以\(i\)的选取不会影响\(min(lim[i],max[p])\)的值。

至于带\(l\)\(r\)限制的情况,用线段树合并求出\(S\)的后缀自动机上每个结点的\(Right\)集合。\(T\)\(S\)的后缀自动机上匹配时,要查询要走到的结点的\(Right\)集合与\([l+len,r]\)的交集是否非空(\(len\)是当前匹配长度,即查询是否有一个长为\(len+1\)的子串在\(S[l,r]\)中出现过)。

代码:

统计答案的时候直接算了这个结点对应的字符串中有多少个不是\(S[l,r]\)的子串,因此式子和上面分析的略有不同。

#include 
#include 
#include 
#include 
#include 
#define _ 0
using namespace std;

namespace zyt
{
    const int N = 5e5 + 10, B = 20;
    template
    inline bool read(T &x)
    {
        char c;
        bool f = false;
        x = 0;
        do
            c = getchar();
        while (c != EOF && c != '-' && !isdigit(c));
        if (c == EOF)
            return false;
        if (c == '-')
            f = true, c = getchar();
        do
            x = x * 10 + c - '0', c = getchar();
        while (isdigit(c));
        if (f)
            x = -x;
        return true;
    }
    inline void read(string &s)
    {
        char buf[N];
        scanf("%s", buf);
        s = buf;
    }
    template
    inline void write(T x)
    {
        static char buf[20];
        char *pos = buf;
        if (x < 0)
            putchar('-'), x = -x;
        do
            *pos++ = x % 10 + '0';
        while (x /= 10);
        while (pos > buf)
            putchar(*--pos);
    }
    typedef long long ll;
    const int CH = 26;
    inline int ctoi(const char c)
    {
        return c - 'a';
    }
    namespace Segment_Tree
    {
        struct node
        {
            int sum, s[2];
        }tree[(N << 1) * B];
        int cnt, head[N << 1];
        int insert(const int lt, const int rt, const int pos)
        {
            int rot = ++cnt;
            ++tree[rot].sum;
            if (lt == rt)
                return rot;
            int mid = (lt + rt) >> 1;
            if (pos <= mid)
                tree[rot].s[0] = insert(lt, mid, pos);
            else
                tree[rot].s[1] = insert(mid + 1, rt, pos);
            return rot;
        }
        int merge(const int rot1, const int rot2)
        {
            if (!rot1)
                return rot2;
            if (!rot2)
                return rot1;
            int rot = ++cnt;
            int lt = merge(tree[rot1].s[0], tree[rot2].s[0]);
            int rt = merge(tree[rot1].s[1], tree[rot2].s[1]);
            tree[rot] = (node){tree[rot1].sum + tree[rot2].sum, lt, rt};
            return rot;
        }
        int query(const int rot, const int lt, const int rt, const int ls, const int rs)
        {
            if (ls > rs)
                return 0;
            if (ls <= lt && rt <= rs)
                return tree[rot].sum;
            int mid = (lt + rt) >> 1, ans = 0;
            if (ls <= mid)
                ans += query(tree[rot].s[0], lt, mid, ls, rs);
            if (rs > mid)
                ans += query(tree[rot].s[1], mid + 1, rt, ls, rs);
            return ans;
        }
    }
    struct SAM
    {
        int last, cnt;
        struct node
        {
            int max, fa, first, s[CH];
        }tree[N << 1];
        void init()
        {
            last = cnt = 1;
            memset(tree[1].s, 0, sizeof(int[CH]));
        }
        void insert(const char c)
        {
            int x = ctoi(c);
            int np = ++cnt, p = last;
            memset(tree[np].s, 0, sizeof(int[CH]));
            tree[np].max = tree[p].max + 1;
            while (p && !tree[p].s[x])
                tree[p].s[x] = np, p = tree[p].fa;
            if (!p)
                tree[np].fa = 1;
            else
            {
                int q = tree[p].s[x];
                if (tree[p].max + 1 == tree[q].max)
                    tree[np].fa = q;
                else
                {
                    int nq = ++cnt;
                    memcpy(tree[nq].s, tree[q].s, sizeof(int[CH]));
                    tree[nq].first = tree[q].first;
                    tree[nq].max = tree[p].max + 1;
                    tree[nq].fa = tree[q].fa;
                    tree[np].fa = tree[q].fa = nq;
                    while (p && tree[p].s[x] == q)
                        tree[p].s[x] = nq, p = tree[p].fa;
                }
            }
            last = np;
        }
        static int buf[N << 1];
        void topo()
        {
            static int count[N];
            int maxx = 0;
            memset(count, 0, sizeof(count));
            for (int i = 1; i <= cnt; i++)
                ++count[tree[i].max], maxx = max(maxx, tree[i].max);
            for (int i = 1; i <= maxx; i++)
                count[i] += count[i - 1];
            for (int i = cnt; i > 0; i--)
                buf[count[tree[i].max]--] = i;
        }
        void build(const string &s, const bool segment)
        {
            using Segment_Tree::head;
            init();
            for (int i = 0; i < s.size(); i++)
            {
                insert(s[i]);
                tree[last].first = i;
                if (segment)
                    head[last] = Segment_Tree::insert(0, s.size() - 1, i);
            }
            if (segment)
            {
                topo();
                for (int i = cnt; i > 0; i--)
                {
                    using Segment_Tree::head;
                    head[tree[buf[i]].fa] = Segment_Tree::merge(head[tree[buf[i]].fa], head[buf[i]]);
                }
            }
        }
    }s1, s2;
    int SAM::buf[N << 1], lim[N];
    string s;
    ll solve(const string &t, const int l, const int r)
    {
        using Segment_Tree::head;
        using Segment_Tree::query;
        SAM::node *tree = s1.tree;
        int now = 1, len = 0;
        for (int i = 0; i < t.size(); i++)
        {
            int x = ctoi(t[i]), nxt = tree[now].s[x];
            while (now && !nxt)
                now = tree[now].fa, nxt = tree[now].s[x], len = tree[now].max;
            while (now)
            {
                int tmp = 0;
                while (len >= 0 && !(tmp = query(head[nxt], 0, s.size() - 1, l + len, r)))
                {
                    --len;
                    if (len == tree[tree[now].fa].max)
                        now = tree[now].fa, nxt = tree[now].s[x];
                }
                if (tmp)
                {
                    now = nxt, ++len;
                    break;
                }
                else
                    now = tree[now].fa, nxt = tree[now].s[x], len = tree[now].max;
            }
            if (!now)
                now = 1, len = 0;
            lim[i] = len;
        }
        ll ans = 0;
        for (int i = 1; i <= s2.cnt; i++)
            ans += max(0, s2.tree[i].max - max(s2.tree[s2.tree[i].fa].max, lim[s2.tree[i].first]));
        return ans;
    }
    int work()
    {
        int T;
        read(s), read(T);
        s1.build(s, true);
        while (T--)
        {
            using namespace Segment_Tree;
            static string t;
            int l, r;
            read(t), read(l), read(r);
            --l, --r;
            s2.build(t, false);
            write(solve(t, l, r)), putchar('\n');
        }
        return (0^_^0);
    }
}
int main()
{
    return zyt::work();
}

转载于:https://www.cnblogs.com/zyt1253679098/p/10324739.html

你可能感兴趣的:(【洛谷4770/UOJ395】[NOI2018]你的名字(后缀数组_线段树合并))