1.下载组件
首先去CDH网站上下载hadoop组件
地址:http://archive.cloudera.com/cdh5/cdh/5/
注意版本号要与其他的组件CDH版本一致
2.环境配置
设置主机名和用户名
配置静态IP
配置SSH免密登录
配置JDK
3.配置HADOOP
1.新建用户hadoop,从root用户获取/opt文件夹的权限,所有节点都要执行
useradd -m hadoop -s /bin/bash
passwd hadoop
chown -R hadoop /opt/module/hadoop
chown -R hadoop /usr/sunny
为hadoop用户添加管理权限
visudo
## Next comes the main part: which users can run what software on
## which machines (the sudoers file can be shared between multiple
## systems).
## Syntax:
##
## user MACHINE=COMMANDS
##
## The COMMANDS section may have other options added to it.
##
## Allow root to run any commands anywhere
root ALL=(ALL) ALL
hadoop ALL=(ALL) ALL
2.hadoop的安装路径不推荐安装在/home/hadoop目录下,推荐安装在/opt目录下,然后切换到hadoop用户,解压文件后将hadoop转移到/opt/module下,并修改文件夹名称为hadoop
tar -zxvf hadoop-2.6.0-cdh5.12.0.tar.gz
mv hadoop-2.6.0-cdh5.12.0 /opt/module/hadoop
修改hadoop文件夹的权限
sudo chown -R hadoop:hadoop hadoop
3.配置环境变量
vim ~/.bash_profile
export HADOOP_HOME=/opt/module/hadoop export HADOOP_INSTALL=$HADOOP_HOME export HADOOP_MAPRED_HOME=$HADOOP_HOME export HADOOP_COMMON_HOME=$HADOOP_HOME export HADOOP_HDFS_HOME=$HADOOP_HOME export YARN_HOME=$HADOOP_HOME
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
source ~/.bash_profile
4.修改配置文件
配置文件的位置为hadoop-2.6.0-cdh5.12.0/etc/hadoop目录下,主要文件:
配置名称 |
类型 |
说明 |
hadoop-env.sh |
Bash脚本 |
Hadoop运行环境变量设置 |
core-site.xml |
xml |
Hadoop的配置项,例如HDFS和MapReduce常用的I/O设置等 |
hdfs-site.xml |
xml |
HDFS守护进程的配置项,包括NameNode、SecondaryNameNode、DataNode、JN等 |
yarn-env.sh |
Bash脚本 |
Yarn运行环境变量设置 |
yarn-site.xml |
xml |
YARN守护进程的配置项,包括ResourceManager和NodeManager等 |
mapred-site.xml |
xml |
MapReduce计算框架的配置项 |
capacity-scheduler.xml |
xml |
Yarn调度属性设置 |
container-executor.cfg |
Cfg |
Yarn Container配置 |
mapred-queues.xml |
xml |
MR队列设置 |
hadoop-metrics.properties |
Java属性 |
控制metrics在Hadoop上如何发布的属性 |
hadoop-metrics2.properties |
Java属性 |
控制metrics在Hadoop上如何发布的属性 |
slaves |
Plain Text |
运行DataNode和NodeManager的机器列表,每行一个 |
exclude |
Plain Text |
移除DN节点配置文件 |
log4j.properties |
系统日志文件、NameNode审计日志DataNode子进程的任务日志的属性 |
|
configuration.xsl |
(1)修改hadoop-env.sh文件,在文件末尾增加环境变量
#--------------------Java Env------------------------------
export JAVA_HOME=/opt/module/jdk1.8.0_144
#--------------------Hadoop Env----------------------------
export HADOOP_HOME=/opt/module/hadoop-2.6.0-cdh5.12.0
#--------------------Hadoop Daemon Options-----------------
# export HADOOP_NAMENODE_OPTS="-Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_NAMENODE_OPTS"
# export HADOOP_DATANODE_OPTS="-Dhadoop.security.logger=ERROR,RFAS $HADOOP_DATANODE_OPTS"
#--------------------Hadoop Logs---------------------------
#export HADOOP_LOG_DIR=${HADOOP_LOG_DIR}/$USER
#--------------------SSH PORT-------------------------------
#export HADOOP_SSH_OPTS="-p 6000" #如果你修改了SSH登录端口,一定要修改此配置。
(2)修改core-site.xml
<configuration> <property> <name>fs.defaultFSname> <value>hdfs://node1.sunny.cn:9000value> property> <property> <name>hadoop.tmp.dirname> <value>file:/usr/sunny/hadoop/tmpvalue> <description>Abase for other temporary directories.description> property> configuration>
这一步是设置提供HDFS服务的主机名和端口号,也就是说HDFS通过master的9000端口提供服务,这项配置也指明了NameNode所运行的节点,即主节点
(3)修改hdfs-site.xml
<configuration> <property> <name>dfs.namenode.secondary.http-addressname> <value>node1.sunny.cn:50090value> property> <property> <name>dfs.replicationname> <value>2value> property> <property> <name>dfs.namenode.name.dirname> <value>/usr/sunny/hadoop/hdfs/namevalue> property> <property> <name>dfs.datanode.data.dirname> <value>/usr/sunny/hadoop/hdfs/datavalue> property> configuration>
以下为网络方案,仅供参考
xml version="1.0" encoding="UTF-8"?> xml-stylesheet type="text/xsl" href="configuration.xsl"?> <configuration> <property> <name>dfs.webhdfs.enabledname> <value>truevalue> property> <property> <name>dfs.namenode.name.dirname> <value>/usr/sunny/hadoop/hdfs/namevalue> property> <property> <name>dfs.namenode.edits.dirname> <value>${dfs.namenode.name.dir}value> property> <property> <name>dfs.datanode.data.dirname> <value>/home/hadoopuser/hadoop-2.6.0-cdh5.6.0/data/dfs/datavalue> property> <property> <name>dfs.replicationname> <value>1value> property> <property> <name>dfs.blocksizename> <value>268435456value> property> <property> <name>dfs.nameservicesname> <value>hadoop-clustervalue> property>
<property> <name>dfs.ha.namenodes.hadoop-clustername> <value>namenode1,namenode2value> property> <property> <name>dfs.namenode.rpc-address.mycluster.nn1name> <value>namenode1:8020value> property> <property> <name>dfs.namenode.rpc-address.mycluster.nn2name> <value>namenode2:8020value> property> <property> <name>dfs.namenode.http-address.hadoop-cluster.namenode1name> <value>namenode1:50070value> property> <property> <name>dfs.namenode.http-address.hadoop-cluster.namenode2name> <value>namenode2:50070value> property> <property> <name>dfs.journalnode.http-addressname> <value>0.0.0.0:8480value> property> <property> <name>dfs.journalnode.rpc-addressname> <value>0.0.0.0:8485value> property>
<property> <name>dfs.namenode.shared.edits.dirname> <value>qjournal://namenode1:8485;namenode2:8485;namenode3:8485/hadoop-clustervalue> property>
<property> <name>dfs.journalnode.edits.dirname> <value>/usr/sunny/hadoop/hdfs/journalvalue> property> <property> <name>dfs.client.failover.proxy.provider.myclustername> <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvidervalue> property> <property> <name>dfs.ha.fencing.methodsname> <value>sshfencevalue> property> <property> <name>dfs.ha.fencing.ssh.private-key-filesname> <value>/home/hadoopuser/.ssh/id_rsavalue> property> <property> <name>dfs.ha.fencing.ssh.connect-timeoutname> <value>30000value> property> <property> <name>dfs.ha.automatic-failover.enabledname> <value>truevalue> property> <property> <name>ha.zookeeper.quorumname> <value>Hadoop-DN-01:2181,Hadoop-DN-02:2181,Hadoop-DN-03:2181value> property> <property> <name>ha.zookeeper.session-timeout.msname> <value>2000value> property> configuration>
dfs.replication配置hdfs中文件的副本数为3,HDFS会自动对文件做冗余处理,这项配置就是配置文件的冗余数,3表示有2份冗余。
dfs.name.dir设置NameNode的元数据存放的本地文件系统路径
dfs.data.dir设置DataNode存放数据的本地文件系统路径
(4)修改mapred-site.xml
目录中只有一个mapred-site.xml.template文件,cp一份出来
<configuration> <property> <name>mapreduce.framework.namename> <value>yarnvalue> property> <property> <name>mapreduce.jobhistory.addressname> <value>node1.sunny.cn:10020value> property> <property> <name>mapreduce.jobhistory.webapp.addressname> <value>node1.sunny.cn:19888value> property> configuration>
以下为网络方案,仅供参考
<configuration> <property> <name>mapred.child.java.optsname> <value>-Xmx1000mvalue> <final>truefinal> <description>final=true表示禁止用户修改JVM大小description> property> <property> <name>mapreduce.framework.namename> <value>yarnvalue> property> <property> <name>mapreduce.jobhistory.addressname> <value>0.0.0.0:10020value> property> <property> <name>mapreduce.jobhistory.webapp.addressname> <value>0.0.0.0:19888value> property> configuration>
(5)修改yarn-site.xml
<configuration> <property> <name>yarn.resourcemanager.hostnamename> <value>node1.sunny.cnvalue> property> <property> <name>yarn.nodemanager.aux-servicesname> <value>mapreduce_shufflevalue> property> configuration>
以下为网络方案,仅供参考
<configuration> <property> <name>yarn.nodemanager.aux-servicesname> <value>mapreduce_shufflevalue> property> <property> <name>yarn.nodemanager.aux-services.mapreduce.shuffle.classname> <value>org.apache.hadoop.mapred.ShuffleHandlervalue> property> <property> <description>Address where the localizer IPC is.description> <name>yarn.nodemanager.localizer.addressname> <value>0.0.0.0:23344value> property> <property> <description>NM Webapp address.description> <name>yarn.nodemanager.webapp.addressname> <value>0.0.0.0:23999value> property> <property> <name>yarn.resourcemanager.connect.retry-interval.msname> <value>2000value> property> <property> <name>yarn.resourcemanager.ha.enabledname> <value>truevalue> property> <property> <name>yarn.resourcemanager.ha.automatic-failover.enabledname> <value>truevalue> property> <property> <name>yarn.resourcemanager.ha.automatic-failover.embeddedname> <value>truevalue> property> <property> <name>yarn.resourcemanager.cluster-idname> <value>yarn-clustervalue> property> <property> <name>yarn.resourcemanager.ha.rm-idsname> <value>rm1,rm2value> property> <property> <name>yarn.resourcemanager.scheduler.classname> <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairSchedulervalue> property> <property> <name>yarn.resourcemanager.recovery.enabledname> <value>truevalue> property> <property> <name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-msname> <value>5000value> property> <property> <name>yarn.resourcemanager.store.classname> <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStorevalue> property> <property> <name>yarn.resourcemanager.zk-addressname> <value>Hadoop-DN-01:2181,Hadoop-DN-02:2181,Hadoop-DN-03:2181value> property> <property> <name>yarn.resourcemanager.zk.state-store.addressname> <value>Hadoop-DN-01:2181,Hadoop-DN-02:2181,Hadoop-DN-03:2181value> property> <property> <name>yarn.resourcemanager.address.rm1name> <value>Hadoop-NN-01:23140value> property> <property> <name>yarn.resourcemanager.address.rm2name> <value>Hadoop-NN-02:23140value> property> <property> <name>yarn.resourcemanager.scheduler.address.rm1name> <value>Hadoop-NN-01:23130value> property> <property> <name>yarn.resourcemanager.scheduler.address.rm2name> <value>Hadoop-NN-02:23130value> property> <property> <name>yarn.resourcemanager.admin.address.rm1name> <value>Hadoop-NN-01:23141value> property> <property> <name>yarn.resourcemanager.admin.address.rm2name> <value>Hadoop-NN-02:23141value> property> <property> <name>yarn.resourcemanager.resource-tracker.address.rm1name> <value>Hadoop-NN-01:23125value> property> <property> <name>yarn.resourcemanager.resource-tracker.address.rm2name> <value>Hadoop-NN-02:23125value> property> <property> <name>yarn.resourcemanager.webapp.address.rm1name> <value>Hadoop-NN-01:23188value> property> <property> <name>yarn.resourcemanager.webapp.address.rm2name> <value>Hadoop-NN-02:23188value> property> <property> <name>yarn.resourcemanager.webapp.https.address.rm1name> <value>Hadoop-NN-01:23189value> property> <property> <name>yarn.resourcemanager.webapp.https.address.rm2name> <value>Hadoop-NN-02:23189value> property> configuration>
(6)修改slaves文件
配置的都是datanode
node2.sunny.cn
node3.sunny.cn
5.初始化namenode
hdfs namenode -format
6.启动Hadoop
start-dfs.sh start-yarn.sh (可以start-all.sh) mr-jobhistory-daemon.sh start historyserver
启动后的进程
如果datanode启动不成功,需要把所有hadoop下tmp文件夹删掉再重新格式化namenode
访问地址:http://192.168.2.11:50070
7.执行分布式实例
(1) 在HDFS 上创建用户目录
hdfs dfs -mkdir -p /user/hadoop
==============================前方高能,建议先行扫描====================================================
在此过程中可能会报出警告:
WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
意思是无法加载本地native库,位于hadoop/lib/native目录,这时候就需要去下载源码编译hadoop-2.6.0-cdh5.12.0-src.tar.gz
下载后上传到服务器并解压,进入到解压后的源码目录下执行命令
mvn package -Dmaven.javadoc.skip=true -Pdist,native -DskipTests -Dtar
打包过程中出现错误
Detected JDK Version: 1.8.0-144 is not in the allowed range [1.7.0,1.7.1000}
表示源码编译需要1.7的JDK,而实际是1.8,所以把jdk降级下
source ~/.bash_profile后jdk依然是1.8,关掉所有进程后依然没变,所以reboot,然后解决
继续编译源码,大概20、30、40、50、60、70多分钟,注意修改mvn的镜像地址,使用国内地址的会快一些
...
好吧,编译到common时继续报错
[ERROR] Failed to execute goal org.apache.hadoop:hadoop-maven-plugins:2.6.0-cdh5.12.0:protoc (compile-protoc) on project hadoop-common: org.apache.maven.plugin.MojoExecutionException: 'protoc --version' did not return a version -> [Help 1]
查阅资料得知:
protobuf是google提供的一个可以编码格式化结构数据方法,Google大部分的RPC端通信协议都是基于protocol buffers的。同时现Hadoop中master和slave中的RPC通信协议也都是基于它实现的。所以下载吧。
需要安装protoc,版本protobuf-2.5.0,但目前google官方链接下载不了。好人的下载链接:http://pan.baidu.com/s/1pJlZubT
上传到服务器之后解压,然后准备编译
编译protoc之前还要先安装gcc, gcc-c++, make,否则又是一堆错误
yum install gcc yum intall gcc-c++ yum install make tar -xvf protobuf-2.5.0.tar.bz2 cd protobuf-2.5.0 ./configure --prefix=/opt/module/protoc/ make && make install
编译好之后记得配置下环境变量
PROTOC_HOME="/opt/module/protoc"
export PATH=$PATH:$PROTOC_HOME/bin
然后source下
然后可以继续编译hadoop源码了
OK
终于编译成功,大约持续了N久
编译好的包在hadoop-src/hadoop-dist/target/hadoop-2.4.1.tar.gz
把tar包复制到本地hadoop/lib/native目录下并将tar包的native里的文件复制到本地hadoop/lib/native下
使用命令查看native库的版本
ldd libhadoop.so.1.0.0
然后将这些文件分发到其他的节点上
scp * [email protected]:/opt/module/hadoop/lib/native/ scp * [email protected]:/opt/module/hadoop/lib/native/
然后需要修改下~/.bash_profile文件
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib:$HADOOP_COMMON_LIB_NATIVE_DIR"
然后source下
验证OK
==============================高能区域结束====================================================
继续执行
(2)
将 /opt/moudle/hadoop/etc/hadoop 中的配置文件作为输入文件复制到分布式文件系统中
hdfs dfs -mkdir input hdfs dfs -put /usr/local/hadoop/etc/hadoop/*.xml input hadoop jar /opt/moudle/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-*.jar grep input output 'dfs[a-z.]+'
查看进度:http://192.168.2.11:8088/cluster
查看输出结果
hdfs dfs -cat output/*
若要再次运行需要把output删除掉
hdfs dfs -rm -r output
附注:
关闭hadoop集群
在node1上执行:
stop-yarn.sh stop-dfs.sh (stop-all.sh) mr-jobhistory-daemon.sh stop historyserver
具体操作:
hadoop上基础操作
hadoop fs -ls *** (hdfs dfs –ls ***) 查看列表 hadoop fs -mkdir *** (hdfs dfs –mkdir ***) 创建文件夹 hadoop fs -rm -r *** (hdfs dfs –rm -r ***) 删除文件夹 hadoop fs -put *** (hdfs dfs –put ***) 上传文件到hdfs hadoop fs -get *** (hdfs dfs –get ***) 下载文件 hadoop fs –cp *** (hdfs dfs –cp ***) 拷贝文件 hadoop fs -cat *** (hdfs dfs –cat ***) 查看文件 hadoop fs -touchz *** (hdfs dfs –touchz ***) 创建空文件
列出所有Hadoop Shell支持的命令:
hadoop fs –help
Java结合例子:
java程序操作
首先导入hadoop相关jar包
新建一个User library
点击Window-->Preferences 搜索框中输入User Libraries